Assessment of the Effectiveness of Random and Real-Networks Based on the Asymptotic Entropy

Author(s):  
Raihana Mokhlissi ◽  
Dounia Lotfi ◽  
Joyati Debnath ◽  
Mohamed El Marraki
Keyword(s):  
2020 ◽  
Vol 63 (6) ◽  
pp. 1153-1168
Author(s):  
Xinxing Chen ◽  
Jiansheng Xie ◽  
Minzhi Zhao

2005 ◽  
Vol 15 (05n06) ◽  
pp. 907-937 ◽  
Author(s):  
VADIM A. KAIMANOVICH

The structure of a self-similar group G naturally gives rise to a transformation which assigns to any probability measure μ on G and any vertex w in the action tree of the group a new probability measure μw. If the measure μ is self-similar in the sense that μw is a convex combination of μ and the δ-measure at the group identity, then the asymptotic entropy of the random walk (G, μ) vanishes; therefore, the random walk is Liouville and the group G is amenable. We construct self-similar measures on several classes of self-similar groups, including the Grigorchuk group of intermediate growth.


2016 ◽  
Vol 37 (5) ◽  
pp. 1480-1491 ◽  
Author(s):  
BEHRANG FORGHANI

We consider general transformations of random walks on groups determined by Markov stopping times and prove that the asymptotic entropy (respectively, rate of escape) of the transformed random walks is equal to the asymptotic entropy (respectively, rate of escape) of the original random walk multiplied by the expectation of the corresponding stopping time. This is an analogue of the well-known Abramov formula from ergodic theory; its particular cases were established earlier by Kaimanovich [Differential entropy of the boundary of a random walk on a group. Uspekhi Mat. Nauk38(5(233)) (1983), 187–188] and Hartman et al [An Abramov formula for stationary spaces of discrete groups. Ergod. Th. & Dynam. Sys.34(3) (2014), 837–853].


1998 ◽  
Vol 18 (3) ◽  
pp. 631-660 ◽  
Author(s):  
VADIM A. KAIMANOVICH

For a large class of Markov operators on trees we prove the formula ${\bf HD}\,\nu=h/l$ connecting the Hausdorff dimension of the harmonic measure $\nu$ on the tree boundary, the rate of escape $l$ and the asymptotic entropy $h$. Applications of this formula include random walks on free groups, conditional random walks, random walks in random environment and random walks on treed equivalence relations.


2016 ◽  
Vol 285 (3-4) ◽  
pp. 707-738
Author(s):  
Lorenz Gilch ◽  
Sebastian Müller ◽  
James Parkinson

2008 ◽  
Vol 36 (3) ◽  
pp. 1134-1152 ◽  
Author(s):  
Sébastien Blachère ◽  
Peter Haïssinsky ◽  
Pierre Mathieu

2015 ◽  
Vol 9 (3) ◽  
pp. 711-735 ◽  
Author(s):  
Sébastien Gouëzel ◽  
Frédéric Mathéus ◽  
François Maucourant

Sign in / Sign up

Export Citation Format

Share Document