scholarly journals Diffusion Tensor Driven Image Registration: A Deep Learning Approach

Author(s):  
Irina Grigorescu ◽  
Alena Uus ◽  
Daan Christiaens ◽  
Lucilio Cordero-Grande ◽  
Jana Hutter ◽  
...  
Author(s):  
Wei Wei ◽  
Xu Haishan ◽  
Julian Alpers ◽  
Marko Rak ◽  
Christian Hansen

Author(s):  
Yabo Fu ◽  
Yang Lei ◽  
Tonghe Wang ◽  
Kristin Higgins ◽  
Jeffrey D. Bradley ◽  
...  

NeuroImage ◽  
2017 ◽  
Vol 158 ◽  
pp. 378-396 ◽  
Author(s):  
Xiao Yang ◽  
Roland Kwitt ◽  
Martin Styner ◽  
Marc Niethammer

2018 ◽  
Vol 6 (3) ◽  
pp. 122-126
Author(s):  
Mohammed Ibrahim Khan ◽  
◽  
Akansha Singh ◽  
Anand Handa ◽  
◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


Author(s):  
Kumar Chandrasekaran ◽  
Prabaakaran Kandasamy ◽  
Srividhya Ramanathan

2019 ◽  
Author(s):  
Aswathy K S ◽  
Rafeeque P C ◽  
Reena Murali

Sign in / Sign up

Export Citation Format

Share Document