On New Convolutional Neural Network Based Algorithms for Selective Segmentation of Images

Author(s):  
Liam Burrows ◽  
Ke Chen ◽  
Francesco Torella
2021 ◽  
Vol 6 (2 (114)) ◽  
pp. 86-95
Author(s):  
Vadym Slyusar ◽  
Mykhailo Protsenko ◽  
Anton Chernukha ◽  
Vasyl Melkin ◽  
Olena Petrova ◽  
...  

This paper considers a model of the neural network for semantically segmenting the images of monitored objects on aerial photographs. Unmanned aerial vehicles monitor objects by analyzing (processing) aerial photographs and video streams. The results of aerial photography are processed by the operator in a manual mode; however, there are objective difficulties associated with the operator's handling a large number of aerial photographs, which is why it is advisable to automate this process. Analysis of the models showed that to perform the task of semantic segmentation of images of monitored objects on aerial photographs, the U-Net model (Germany), which is a convolutional neural network, is most suitable as a basic model. This model has been improved by using a wavelet layer and the optimal values of the model training parameters: speed (step) ‒ 0.001, the number of epochs ‒ 60, the optimization algorithm ‒ Adam. The training was conducted by a set of segmented images acquired from aerial photographs (with a resolution of 6,000×4,000 pixels) by the Image Labeler software in the mathematical programming environment MATLAB R2020b (USA). As a result, a new model for semantically segmenting the images of monitored objects on aerial photographs with the proposed name U-NetWavelet was built. The effectiveness of the improved model was investigated using an example of processing 80 aerial photographs. The accuracy, sensitivity, and segmentation error were selected as the main indicators of the model's efficiency. The use of a modified wavelet layer has made it possible to adapt the size of an aerial photograph to the parameters of the input layer of the neural network, to improve the efficiency of image segmentation in aerial photographs; the application of a convolutional neural network has allowed this process to be automatic.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2018 ◽  
Vol 2018 (9) ◽  
pp. 202-1-202-6 ◽  
Author(s):  
Edward T. Scott ◽  
Sheila S. Hemami

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


2018 ◽  
Vol 2018 (10) ◽  
pp. 338-1-338-6
Author(s):  
Patrick Martell ◽  
Vijayan Asari

Author(s):  
Yao Yang ◽  
Yuanjiang Hu ◽  
Lingling Chen ◽  
Xiaoman Liu ◽  
Na Qin ◽  
...  

Author(s):  
Haitao Ma ◽  
Shihong Yue ◽  
Jian Lu ◽  
Sidolla Yem ◽  
Huaxiang Wang

Sign in / Sign up

Export Citation Format

Share Document