Atlas-Based Segmentation of the Human Embryo Using Deep Learning with Minimal Supervision

Author(s):  
Wietske A. P. Bastiaansen ◽  
Melek Rousian ◽  
Régine P. M. Steegers-Theunissen ◽  
Wiro J. Niessen ◽  
Anton Koning ◽  
...  
Keyword(s):  
2019 ◽  
Vol 112 (3) ◽  
pp. e70-e71 ◽  
Author(s):  
Manoj Kumar Kanakasabapathy ◽  
Prudhvi Thirumalaraju ◽  
Raghav Gupta ◽  
Rohan Pooniwala ◽  
Hemanth Kandula ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Vidas Raudonis ◽  
Agne Paulauskaite-Taraseviciene ◽  
Kristina Sutiene ◽  
Domas Jonaitis

Abstract Background Infertility and subfertility affect a significant proportion of humanity. Assisted reproductive technology has been proven capable of alleviating infertility issues. In vitro fertilisation is one such option whose success is highly dependent on the selection of a high-quality embryo for transfer. This is typically done manually by analysing embryos under a microscope. However, evidence has shown that the success rate of manual selection remains low. The use of new incubators with integrated time-lapse imaging system is providing new possibilities for embryo assessment. As such, we address this problem by proposing an approach based on deep learning for automated embryo quality evaluation through the analysis of time-lapse images. Automatic embryo detection is complicated by the topological changes of a tracked object. Moreover, the algorithm should process a large number of image files of different qualities in a reasonable amount of time. Methods We propose an automated approach to detect human embryo development stages during incubation and to highlight embryos with abnormal behaviour by focusing on five different stages. This method encompasses two major steps. First, the location of an embryo in the image is detected by employing a Haar feature-based cascade classifier and leveraging the radiating lines. Then, a multi-class prediction model is developed to identify a total cell number in the embryo using the technique of deep learning. Results The experimental results demonstrate that the proposed method achieves an accuracy of at least 90% in the detection of embryo location. The implemented deep learning approach to identify the early stages of embryo development resulted in an overall accuracy of over 92% using the selected architectures of convolutional neural networks. The most problematic stage was the 3-cell stage, presumably due to its short duration during development. Conclusion This research contributes to the field by proposing a model to automate the monitoring of early-stage human embryo development. Unlike in other imaging fields, only a few published attempts have involved leveraging deep learning in this field. Therefore, the approach presented in this study could be used in the creation of novel algorithms integrated into the assisted reproductive technology used by embryologists.


2020 ◽  
Vol 2 (10) ◽  
pp. 2000080 ◽  
Author(s):  
Yoav Kan-Tor ◽  
Nir Zabari ◽  
Ity Erlich ◽  
Adi Szeskin ◽  
Tamar Amitai ◽  
...  

Author(s):  
Astrid Zeman ◽  
Anne-Sofie Maerten ◽  
Annemie Mengels ◽  
Lie Fong Sharon ◽  
Carl Spiessens ◽  
...  

Author(s):  
Stellan Ohlsson
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


2020 ◽  
Author(s):  
B Böttcher ◽  
E Beller ◽  
A Busse ◽  
F Streckenbach ◽  
M Weber ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
L Pennig ◽  
L Lourenco Caldeira ◽  
C Hoyer ◽  
L Görtz ◽  
R Shahzad ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document