The Number of Roots in the Critical Strip

Author(s):  
Walter Dittrich
Keyword(s):  
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .


2018 ◽  
Vol 51 (2) ◽  
pp. 319-327
Author(s):  
Winfried Kohnen ◽  
Jyoti Sengupta ◽  
Miriam Weigel

Information ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 483
Author(s):  
Michel Riguidel

From the functional equation of Riemann’s zeta function, this article gives new insight into Hadamard’s product formula. The function and its family of associated functions, expressed as a sum of rational fractions, are interpreted as meromorphic functions whose poles are the poles and zeros of the function. This family is a mathematical and numerical tool which makes it possible to estimate the value of the function at a point in the critical strip from a point on the critical line .Generating estimates of at a given point requires a large number of adjacent zeros, due to the slow convergence of the series. The process allows a numerical approach of the Riemann hypothesis (RH). The method can be extended to other meromorphic functions, in the neighborhood of isolated zeros, inspired by the Weierstraß canonical form. A final and brief comparison is made with the and functions over finite fields.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 285
Author(s):  
Michel Riguidel

This article proposes a morphogenesis interpretation of the zeta function by computational approach by relying on numerical approximation formulae between the terms and the partial sums of the series, divergent in the critical strip. The goal is to exhibit structuring properties of the partial sums of the raw series by highlighting their morphogenesis, thanks to the elementary functions constituting the terms of the real and imaginary parts of the series, namely the logarithmic, cosine, sine, and power functions. Two essential indices of these sums appear: the index of no return of the vagrancy and the index of smothering of the function before the resumption of amplification of its divergence when the index tends towards infinity. The method consists of calculating, displaying graphically in 2D and 3D, and correlating, according to the index, the angles, the terms and the partial sums, in three nested domains: the critical strip, the critical line, and the set of non-trivial zeros on this line. Characteristics and approximation formulae are thus identified for the three domains. These formulae make it possible to grasp the morphogenetic foundations of the Riemann hypothesis (RH) and sketch the architecture of a more formal proof.


2013 ◽  
Vol 65 (1) ◽  
pp. 22-51 ◽  
Author(s):  
Valentin Blomer ◽  
Farrell Brumley

AbstractWe prove a nonvanishing result for families of GLn× GLn Rankin–Selberg L-functions in the critical strip, as one factor runs over twists by Hecke characters. As an application, we simplify the proof, due to Luo, Rudnick, and Sarnak, of the best known bounds towards the Generalized Ramanujan Conjecture at the infinite places for cusp forms on GLn. A key ingredient is the regularization of the units in residue classes by the use of an Arakelov ray class group.


Sign in / Sign up

Export Citation Format

Share Document