Multi-fidelity Multicriteria Optimization of Strain Gauge Force Sensors Using a Neural Network-Based Surrogate Model

Author(s):  
Sergey I. Gavrilenkov ◽  
Sergey S. Gavriushin
Author(s):  
Hendrik Wohrle ◽  
Mariela De Lucas Alvarez ◽  
Fabian Schlenke ◽  
Alexander Walsemann ◽  
Michael Karagounis ◽  
...  

2020 ◽  
Vol 10 (18) ◽  
pp. 6476
Author(s):  
Sungsik Yoon ◽  
Jeongseob Kim ◽  
Minsun Kim ◽  
Hye-Young Tak ◽  
Young-Joo Lee

In this study, an artificial neural network (ANN)-based surrogate model is proposed to evaluate the system-level seismic risk of bridge transportation networks efficiently. To estimate the performance of a network, total system travel time (TSTT) was introduced as a performance index, and an ANN-based surrogate model was incorporated to evaluate a high-dimensional network with probabilistic seismic hazard analysis (PSHA) efficiently. To generate training data, the damage states of bridge components were considered as the input training data, and TSTT was selected as output data. An actual bridge transportation network in South Korea was considered as the target network, and the entire network map was reconstructed based on geographic information system data to demonstrate the proposed method. For numerical analysis, the training data were generated based on epicenter location history. By using the surrogate model, the network performance was estimated for various earthquake magnitudes at the trained epicenter with significantly-reduced computational time cost. In addition, 20 historical epicenters were adopted to confirm the robustness of the epicenter. Therefore, it was concluded that the proposed ANN-based surrogate model could be used as an alternative for efficient system-level seismic risk assessment of high-dimensional bridge transportation networks.


Author(s):  
Yaqi Zhang ◽  
Vadim Shapiro ◽  
Paul Witherell

Abstract One of the most prevalent additive manufacturing processes, the powder bed fusion process, is driven by a moving heat source that melts metals to build a part. This moving heat source, and the subsequent formation and moving of a melt pool, plays an important role in determining both the geometric and mechanical properties of the printed components. The ability to control the melt pool during the build process is a sought after mechanism for improving quality control and optimizing manufacturing parameters. For this reason, efficient models that can predict melt pool size based on the process input (i.e., laser power, scan speed, spot size and scan path) offer a path to improved process control. Towards improved process control, a data-driven melt pool prediction model is built with a neighborhood-based neural network and trained using experimental data from the National Institute of Standards and Technology (NIST). The model considers the influence of both manufacturing parameters and laser scan paths. The scan path information is encoded using two novel neighborhood features of the neural network through locality. The neural network is used to generate a surrogate model, and we demonstrate how the performance of the resulting surrogate model can be further improved by using several ensemble methods. We then demonstrate how the trained surrogate model can be used as a forward solver for developing novel laser power design algorithms. The resulting laser power plan is designed to keep melt pool size as constant as possible for any given scan pattern. The algorithm is implemented and validated with numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document