Comparison of Different Methods to Determine the Per-Phase Equivalent Circuit Parameters of Three-Phase Induction Motors Using IEC Nameplate and Catalogue Data

2021 ◽  
pp. 693-705
Author(s):  
Fernando J. T. E. Ferreira ◽  
André M. Silva ◽  
Edson Bortoni
Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer

The paper deals with faults diagnosis method proposed to detect the inter-turn and turn to earth short circuit in stator winding of three-phase high-speed solid rotor induction motors. This method based on negative sequence current of motor and fuzzy neural network algorithm. On the basis of analysis of 2-D electromagnet field in the solid rotor the rotor impedance has been derived to develop the solid rotor induction motor equivalent circuit. The motor equivalent circuit is simulated by MATLAB software to study and record the data for training and testing the proposed diagnosis method. The numerical results of proposed approach are evaluated using simulation of a three-phase high-speed solid-rotor induction motor of two-pole, 140 Hz. The results of simulation shows that the proposed diagnosis method is fast and efficient for detecting inter-turn and turn to earth faults in stator winding of high-speed solid-rotor induction motors with different faults conditions


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 340
Author(s):  
Moshe Averbukh ◽  
Efim Lockshin

The determination of equivalent circuit parameters for AC induction motors represents an important task in an electrical machine laboratory. Frequently used open-circuit and short current tests answer these requirements. However, the results have a low accuracy. This becomes especially obvious when the equivalent circuit is applied for the motor current and power prediction. The main obstacles in this circumstance lie in the difficulty of providing a pristine open-circuit test, the lack of which causes errors in parameter estimation. A much more accurate approach can be carried out with a test including several output points with measurements of the motor torque, velocity, current, and power magnitudes. Nevertheless, a relatively simple and accurate method to ensure determining parameters for such tests does not exist. This article tries to provide such a method by an approach based on Kloss’s simplified equation and the Thevenin theorem. The significant novelty of the method is the specially selected synergetic interaction between the analytical and numerical approaches, which give a relatively simple algorithm with a good accuracy and a convergence of the parameters’ estimation.


Sign in / Sign up

Export Citation Format

Share Document