scholarly journals PASTA: An Efficient Proactive Adaptation Approach Based on Statistical Model Checking for Self-Adaptive Systems

Author(s):  
Yong-Jun Shin ◽  
Eunho Cho ◽  
Doo-Hwan Bae

AbstractProactive adaptation, in which the adaptation for a system’s reliable goal achievement is performed by predicting changes in the environment, is considered as an effective alternative to reactive adaptation, in which adaptation is performed after observing changes. When predicting the environmental changes, the prediction may be uncertain, so it is necessary to verify and confirm an adaptation’s consequences before execution. To resolve the uncertainty, probabilistic model checking (PMC) has been utilized for verification of adaptation tactics’ effects on the goal of a self-adaptive system (SAS). However, PMC-based approaches have limitations on the state-explosion problem of complex SAS model verification and the modeling languages supported by the model checkers. In this paper, to overcome the limitations of the PMC-based approaches, we propose an efficient Proactive Adaptation approach based on STAtistical model checking (PASTA). Our approach allows SASs to mitigate the uncertainty of the future environment, faster than the PMC-based approach, by producing statistically sufficient samples for verification of adaptation tactics based on statistical model checking (SMC) algorithms. We provide algorithmic processes, a reference architecture, and an open-source implementation skeleton of PASTA for engineers to apply it for SAS development. We evaluate PASTA on two SASs using actual data and show that PASTA is efficient comparing to the PMC-based approach. We also provide a comparative analysis of the advantages and disadvantages of PMC- and SMC-based proactive adaptation to guide engineers’ decision-making for SAS development.

2020 ◽  
Author(s):  
Aristóteles Esteves Marçal Da Silva ◽  
Aline Maria Santos Andrade ◽  
Sandro Santos Andrade

This paper presents a model checking-based approach to support the autonomous planning of adaptation actions in Self-Adaptive Systems, designed in consonance with the MAPE-K reference architecture. We evaluated our approach with a case-study aiming at verifying self-healing and self-organizing properties in a distributed and decentralized traffic monitoring system. Results show that our approach is able to generate adaptation plans satisfying the goals for all expected scenarios in such a case-study, providing a flexible formal framework where adaptation strategies and goals can be inserted/removed.


Sign in / Sign up

Export Citation Format

Share Document