Grey-Box Modelling via Gaussian Process Mean Functions for Mechanical Systems

2021 ◽  
pp. 161-168
Author(s):  
Sikai Zhang ◽  
Elizabeth J. Cross
1975 ◽  
Vol 12 (4) ◽  
pp. 724-733 ◽  
Author(s):  
Israel Bar-David

We find expressions for the R–N derivative of the stationary Gaussian process with the particular covariance and mean, respectively, R(t, s) = max(1 – |t – s|, 0) and m(t)= aR(t, D), 0 ≦ D ≦ 1, within the time interval [0, 1]. We use these results, and a lemma on multiple reflections of the Wiener process, to find formulae for the probabilities of first passage time and maxima in [0, 1], and bounds on the former within [– 1, 1]. While previous work dealt extensively with the zero mean process, mean functions, as defined here, appear in signal detection and parameter estimation problems under the hypothesis that a rectangular signal centered at t = D is present in an observed process.


1975 ◽  
Vol 12 (04) ◽  
pp. 724-733 ◽  
Author(s):  
Israel Bar-David

We find expressions for the R–N derivative of the stationary Gaussian process with the particular covariance and mean, respectively, R(t, s) = max(1 – |t – s|, 0) and m(t)= aR(t, D), 0 ≦ D ≦ 1, within the time interval [0, 1]. We use these results, and a lemma on multiple reflections of the Wiener process, to find formulae for the probabilities of first passage time and maxima in [0, 1], and bounds on the former within [– 1, 1]. While previous work dealt extensively with the zero mean process, mean functions, as defined here, appear in signal detection and parameter estimation problems under the hypothesis that a rectangular signal centered at t = D is present in an observed process.


2021 ◽  
Author(s):  
Alberto Dalla Libera ◽  
Fabio Amadio ◽  
Daniel Nikovski ◽  
Ruggero Carli ◽  
Diego Romeres

2007 ◽  
Vol 44 (02) ◽  
pp. 393-408 ◽  
Author(s):  
Allan Sly

Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the important local properties but avoids the undesirable oscillations in magnitude. We also show how the Hölder exponent can be estimated locally from discrete data in this model.


1987 ◽  
Vol 26 (03) ◽  
pp. 117-123
Author(s):  
P. Tautu ◽  
G. Wagner

SummaryA continuous parameter, stationary Gaussian process is introduced as a first approach to the probabilistic representation of the phenotype inheritance process. With some specific assumptions about the components of the covariance function, it may describe the temporal behaviour of the “cancer-proneness phenotype” (CPF) as a quantitative continuous trait. Upcrossing a fixed level (“threshold”) u and reaching level zero are the extremes of the Gaussian process considered; it is assumed that they might be interpreted as the transformation of CPF into a “neoplastic disease phenotype” or as the non-proneness to cancer, respectively.


Sign in / Sign up

Export Citation Format

Share Document