scaling properties
Recently Published Documents


TOTAL DOCUMENTS

1504
(FIVE YEARS 193)

H-INDEX

74
(FIVE YEARS 7)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Paul Stapor ◽  
Leonard Schmiester ◽  
Christoph Wierling ◽  
Simon Merkt ◽  
Dilan Pathirana ◽  
...  

AbstractQuantitative dynamic models are widely used to study cellular signal processing. A critical step in modelling is the estimation of unknown model parameters from experimental data. As model sizes and datasets are steadily growing, established parameter optimization approaches for mechanistic models become computationally extremely challenging. Mini-batch optimization methods, as employed in deep learning, have better scaling properties. In this work, we adapt, apply, and benchmark mini-batch optimization for ordinary differential equation (ODE) models, thereby establishing a direct link between dynamic modelling and machine learning. On our main application example, a large-scale model of cancer signaling, we benchmark mini-batch optimization against established methods, achieving better optimization results and reducing computation by more than an order of magnitude. We expect that our work will serve as a first step towards mini-batch optimization tailored to ODE models and enable modelling of even larger and more complex systems than what is currently possible.


2022 ◽  
Vol 2022 (1) ◽  
pp. 013202
Author(s):  
Chuan Wang ◽  
Hui Xia

Abstract Do evolving surfaces become flat or not with time evolving when material deposition stops? As one qualitative exploration of this interesting issue, modified stochastic models for persisting roughness have been proposed by Schwartz and Edwards (2004 Phys. Rev. E 70 061602). In this work, we perform numerical simulations on the modified versions of Edwards–Wilkinson (EW) and Kardar–Parisi–Zhang (KPZ) systems when the angle of repose is introduced. Our results show that the evolving surface always presents persisting roughness during the flattening process, and sand dune-like morphology could gradually appear, even when the angle of repose is very small. Nontrivial scaling properties and differences of evolving surfaces between the modified EW and KPZ systems are also discussed.


2022 ◽  
Vol 258 ◽  
pp. 05012
Author(s):  
A.Yu. Kotov ◽  
M.P. Lombardo ◽  
A. Trunin

We study the properties of finite temperature QCD using lattice simulations with Nf = 2 + 1 + 1 Wilson twisted mass fermions for pion masses from physical up to heavy quark regime. In particular, we investigate the scaling properties of the chiral phase transition close to the chiral limit. We found compatibility with O(4) universality class for pion masses up to physical and in the temperature range [120 : 300] MeV. We also discuss other alternatives, including mean field behaviour or Z2 scaling. We provide an estimation of the critical temperature in the chiral limit, T0 = 134−4+6 MeV, which is stable against various scaling scenarios.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 117
Author(s):  
Jonathan Blackledge ◽  
Marc Lamphiere

This paper provides a review of the Fractal Market Hypothesis (FMH) focusing on financial times series analysis. In order to put the FMH into a broader perspective, the Random Walk and Efficient Market Hypotheses are considered together with the basic principles of fractal geometry. After exploring the historical developments associated with different financial hypotheses, an overview of the basic mathematical modelling is provided. The principal goal of this paper is to consider the intrinsic scaling properties that are characteristic for each hypothesis. In regard to the FMH, it is explained why a financial time series can be taken to be characterised by a 1/t1−1/γ scaling law, where γ>0 is the Lévy index, which is able to quantify the likelihood of extreme changes in price differences occurring (or otherwise). In this context, the paper explores how the Lévy index, coupled with other metrics, such as the Lyapunov Exponent and the Volatility, can be combined to provide long-term forecasts. Using these forecasts as a quantification for risk assessment, short-term price predictions are considered using a machine learning approach to evolve a nonlinear formula that simulates price values. A short case study is presented which reports on the use of this approach to forecast Bitcoin exchange rate values.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 61
Author(s):  
Pedro Carpena ◽  
Manuel Gómez-Extremera ◽  
Pedro A. Bernaola-Galván

Detrended Fluctuation Analysis (DFA) has become a standard method to quantify the correlations and scaling properties of real-world complex time series. For a given scale ℓ of observation, DFA provides the function F(ℓ), which quantifies the fluctuations of the time series around the local trend, which is substracted (detrended). If the time series exhibits scaling properties, then F(ℓ)∼ℓα asymptotically, and the scaling exponent α is typically estimated as the slope of a linear fitting in the logF(ℓ) vs. log(ℓ) plot. In this way, α measures the strength of the correlations and characterizes the underlying dynamical system. However, in many cases, and especially in a physiological time series, the scaling behavior is different at short and long scales, resulting in logF(ℓ) vs. log(ℓ) plots with two different slopes, α1 at short scales and α2 at large scales of observation. These two exponents are usually associated with the existence of different mechanisms that work at distinct time scales acting on the underlying dynamical system. Here, however, and since the power-law behavior of F(ℓ) is asymptotic, we question the use of α1 to characterize the correlations at short scales. To this end, we show first that, even for artificial time series with perfect scaling, i.e., with a single exponent α valid for all scales, DFA provides an α1 value that systematically overestimates the true exponent α. In addition, second, when artificial time series with two different scaling exponents at short and large scales are considered, the α1 value provided by DFA not only can severely underestimate or overestimate the true short-scale exponent, but also depends on the value of the large scale exponent. This behavior should prevent the use of α1 to describe the scaling properties at short scales: if DFA is used in two time series with the same scaling behavior at short scales but very different scaling properties at large scales, very different values of α1 will be obtained, although the short scale properties are identical. These artifacts may lead to wrong interpretations when analyzing real-world time series: on the one hand, for time series with truly perfect scaling, the spurious value of α1 could lead to wrongly thinking that there exists some specific mechanism acting only at short time scales in the dynamical system. On the other hand, for time series with true different scaling at short and large scales, the incorrect α1 value would not characterize properly the short scale behavior of the dynamical system.


2021 ◽  
Vol 9 (6) ◽  
pp. 1545-1561
Author(s):  
Nikos Theodoratos ◽  
James W. Kirchner

Abstract. We examine the influence of incision thresholds on topographic and scaling properties of landscapes that follow a landscape evolution model (LEM) with terms for stream-power incision, linear diffusion, and uniform uplift. Our analysis uses three main tools. First, we examine the graphical behavior of theoretical relationships between curvature and the steepness index (which depends on drainage area and slope). These relationships plot as straight lines for the case of steady-state landscapes that follow the LEM. These lines have slopes and intercepts that provide estimates of landscape characteristic scales. Such lines can be viewed as counterparts of slope–area relationships, which follow power laws in detachment-limited landscapes but not in landscapes with diffusion. We illustrate the response of these curvature–steepness index lines to changes in the values of parameters. Second, we define a Péclet number that quantifies the competition between incision and diffusion, while taking the incision threshold into account. We examine how this Péclet number captures the influence of the incision threshold on the degree of landscape dissection. Third, we characterize the influence of the incision threshold using a ratio between it and the steepness index. This ratio is a dimensionless number in the case of the LEM that we use and reflects the fraction by which the incision rate is reduced due to the incision threshold; in this way, it quantifies the relative influence of the incision threshold across a landscape. These three tools can be used together to graphically illustrate how topography and process competition respond to incision thresholds.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Claire Canner ◽  
Christopher Hayes ◽  
Robin Huang ◽  
Michael Orwin ◽  
Luke G. Rogers

Abstract The 4 ⁢ N {4N} -carpets are a class of infinitely ramified self-similar fractals with a large group of symmetries. For a 4 ⁢ N {4N} -carpet F, let { F n } n ≥ 0 {\{F_{n}\}_{n\geq 0}} be the natural decreasing sequence of compact pre-fractal approximations with ⋂ n F n = F {\bigcap_{n}F_{n}=F} . On each F n {F_{n}} , let ℰ ⁢ ( u , v ) = ∫ F N ∇ ⁡ u ⋅ ∇ ⁡ v ⁢ d ⁢ x {\mathcal{E}(u,v)=\int_{F_{N}}\nabla u\cdot\nabla v\,dx} be the classical Dirichlet form and u n {u_{n}} be the unique harmonic function on F n {F_{n}} satisfying a mixed boundary value problem corresponding to assigning a constant potential between two specific subsets of the boundary. Using a method introduced by [M. T. Barlow and R. F. Bass, On the resistance of the Sierpiński carpet, Proc. Roy. Soc. Lond. Ser. A 431 (1990), no. 1882, 345–360], we prove a resistance estimate of the following form: there is ρ = ρ ⁢ ( N ) > 1 {\rho=\rho(N)>1} such that ℰ ⁢ ( u n , u n ) ⁢ ρ n {\mathcal{E}(u_{n},u_{n})\rho^{n}} is bounded above and below by constants independent of n. Such estimates have implications for the existence and scaling properties of Brownian motion on F.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wanda Strychalski

Blebbing occurs in cells under high cortical tension when the membrane locally detaches from the actin cortex, resulting in pressure-driven flow of the cytosol and membrane expansion. Some cells use blebs as leading edge protrusions during cell migration, particularly in 3D environments such as a collagen matrix. Blebs can be initiated through either a localized loss of membrane-cortex adhesion or ablation of the cortex in a region. Bleb morphologies resulting from different initiation mechanisms have not been studied in detail, either experimentally or with theoretical models. Additionally, material properties of the cytoplasm, such as elasticity, have been shown to be important for limiting bleb size. A 3D dynamic computational model of the cell is presented that includes mechanics and the interactions of the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model is used to quantify bleb expansion dynamics and shapes that result from simulations using different initiation mechanisms. The cytoplasm is modeled as a both viscous fluid and as a poroelastic material. Results from model simulations with a viscous fluid cytoplasm model show much broader blebs that expand faster when they are initiated via cortical ablation than when they are initiated by removing only membrane-cortex adhesion. Simulation results using the poroelastic model of the cytoplasm provide qualitatively similar bleb morphologies regardless of the initiation mechanism. Parameter studies on bleb expansion time, cytoplasmic stiffness, and permeability reveal different scaling properties, namely a smaller power-law exponent, in 3D simulations compared to 2D ones.


2021 ◽  
Author(s):  
Ibrahim Lawal Kane ◽  
Venkatesan Madha Suresh

In the present study, the features of rainfall time series (1971–2016) in 9 meteorological regions of Thiruvallur, Tamil Nadu, India that comprises Thiruvallur, Korattur_Dam, Ponneri, Poondi, Red Hills, Sholingur, Thamaraipakkam, Thiruvottiyur and Vallur Anicut were studied. The evaluation of rainfall time series is one of the approaches for efficient hydrological structure design. Characterising and identifying patterns is one of the main objectives of time series analysis. Rainfall is a complex phenomenon, and the temporal variation of this natural phenomenon has been difficult to characterise and quantify due to its randomness. Such dynamical behaviours are present in multiple domains and it is therefore essential to have tools to model them. To solve this problem, fractal analysis based on Detrended Fluctuation Analysis (DFA) and Rescaled Range (R/S) analysis were employed. The fractal analysis produces estimates of the magnitude of detrended fluctuations at different scales (window sizes) of a time series and assesses the scaling relationship between estimates and time scales. The DFA and (R/S) gives an estimate known as Hurst exponent (H) that assumes self-similarity in the time series. The results of H exponent reveals typical behaviours shown by all the rainfall time series, Thiruvallur and Sholingur rainfall region have H exponent values within 0.5 < H < 1 which is an indication of persistent behaviour or long memory. In this case, a future data point is likely to be followed by a data point preceding it; Ponneri and Poondi have conflicting results based on the two methods, however, their H values are approximately 0.5 showing random walk behaviour in which there is no correlation between any part and a future. Thamaraipakkam, Thiruvottiyur, Vallur Anicut, Korattur Dam and Red Hills have H values less than 0.5 indicating a property called anti-persistent in which an increase will tend to be followed by a decrease or vice versa. Taking into consideration of such features in modelling, rainfall time series could be an exhaustive rainfall model. Finding appropriate models to estimate and predict future rainfalls is the core idea of this study for future research.


Sign in / Sign up

Export Citation Format

Share Document