estimation problems
Recently Published Documents


TOTAL DOCUMENTS

745
(FIVE YEARS 91)

H-INDEX

48
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Satoru Iwasaki

Abstract This paper deals with initial state estimation problems of the heat equation in equilateral metric graphs being admitted to have cycles. Particularly, we are concerned with suitable placements of observation points in order to uniquely determine the initial state from observation data. We give a necessary and sufficient condition for suitable placements of observation points, and such suitable placements are determined from transition matrices of metric graphs. From numerical simulations, we confirm effectiveness of a necessary and sufficient condition.


Jurnal Elemen ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 161-174
Author(s):  
Budi Murtiyasa ◽  
Afifah Ma'rufi ◽  
Mohd Asrul Affendi bin Abdullah

Interval estimation is an important topic, especially in drawing conclusions on an event. Mathematics education students must possess the skill to formulate and use interval estimation. The errors of mathematics education students in formulating wrong interval estimates indicate a low understanding of interval estimation. This study explores the errors of mathematics education students in interpreting the variance in the questions regarding selecting the proper test statistic to formulate the interval estimation of mean accurately. Respondents in this study involved 36 students of mathematics education (N = 9 males, N = 27 females). This research is qualitative research with a qualitative descriptive approach. Data collection was carried out using the respondents’ ability test and interviews. The respondents’ ability test instrument was tested on 36 students and declared valid where r-count r-table with r-table of 0.3291, and declared reliable with a Cronbach Alpha value of 0.876 0.6. Through an exploratory approach, data were analyzed by categorizing, reducing, and interpreting to conclude students' abilities and thinking methods in formulating interval estimation of the mean based on the variance in questions. The results showed that mathematics education students neglected the variance, so they could not determine the test statistics correctly, resulting in error interval estimates. This study provides insight into the thinking methods of mathematics education students on variance in interval estimation problems in the hope of anticipating errors in formulating interval estimation problems.


Manipulation of robots is carried out by the operators through a sequence of commands. However, the accuracy of the manipulation is still hindered due to parameter uncertainty. This results in less accurate robotic operations and hence affects the job performance. Due to measurement errors and sensor faults, the operation of robots malfunctions. Generally, errors are reduced with the use of high precision sensors and correcting hardware faults. However, corrections can also be made on a software platform to handle the correction process. Presently, the Denavit–Hartenberg (DH) parameters of a robotic manipulator are optimized for forward kinematics problems. The optimization is carried out using the JAYA approach. The 6R MTAB Aristo XT robot is selected as a case study for the experimental validation of the proposed approach. Experimental results reveal that the optimization of DH parameters improves accuracy for forward kinematic estimation problems. The proposed JAYA approach can further be extended to other robotic manipulators for parameter optimization problems.


Author(s):  
B.I. Ananyev

Two problems of nonlinear guaranteed estimation for states of dynamical systems are considered. It is supposed that unknown measurable in $t$ disturbances are linearly included in the equation of motion and are additive in the measurement equations. These disturbances are constrained by nonlinear integral functionals, one of which is analog of functional of the generalized work. The studied problem consists in creation of the information sets according to measurement data containing the true position of the trajectory. The dynamic programming approach is used. If the first functional requires solving a nonlinear equation in partial derivatives of the first order which is not always possible, then for functional of the generalized work it is enough to find a solution of the linear Lyapunov equation of the first order that significantly simplifies the problem. Nevertheless, even in this case it is necessary to impose additional conditions on the system parameters in order for the system trajectory of the observed signal to exist. If the motion equation is linear in state variable, then many assumptions are carried out automatically. For this case the issue of mutual approximation of information sets via inclusion for different functionals is discussed. In conclusion, the most transparent linear quadratic case is considered. The statement is illustrated by examples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Chen ◽  
Zheng-wen Long ◽  
Zhi He ◽  
Shen-tong Ji

AbstractWe investigate the parameter estimation problems of two-atom system driven by the phase noise lasers (PNLs) environment. And we give a general method of numeric solution to handle the problems of atom system under the PNLs environment. The calculation results of this method on Quantum Fisher Information (QFI) are consistent with our former results. Moreover, we consider the dipole–dipole (d–d) interaction between the atoms under PNLs environment with the collective decay, and the results show that larger d–d interaction and smaller collective decay rate lead to larger QFI of the two-atom system. So the collective decay will destroy the QFI while the d–d interaction will preserve the QFI, these results can be used to protect the QFI of two-atom system driven by the PNLs environment.


Author(s):  
Lucas Brynte ◽  
Viktor Larsson ◽  
José Pedro Iglesias ◽  
Carl Olsson ◽  
Fredrik Kahl

AbstractWhy is it that semidefinite relaxations have been so successful in numerous applications in computer vision and robotics for solving non-convex optimization problems involving rotations? In studying the empirical performance, we note that there are few failure cases reported in the literature, in particular for estimation problems with a single rotation, motivating us to gain further theoretical understanding. A general framework based on tools from algebraic geometry is introduced for analyzing the power of semidefinite relaxations of problems with quadratic objective functions and rotational constraints. Applications include registration, hand–eye calibration, and rotation averaging. We characterize the extreme points and show that there exist failure cases for which the relaxation is not tight, even in the case of a single rotation. We also show that some problem classes are always tight given an appropriate parametrization. Our theoretical findings are accompanied with numerical simulations, providing further evidence and understanding of the results.


Sign in / Sign up

Export Citation Format

Share Document