2008 ◽  
Vol 378-379 ◽  
pp. 355-370 ◽  
Author(s):  
Andrea Carpinteri ◽  
Andrea Spagnoli ◽  
Sabrina Vantadori

As is well-known, fatigue limit, threshold stress intensity range and fatigue crack growth rate are influenced by the specimen or structure size. Limited information on size effect is available in the literature. In the present paper, by employing some concepts of fractal geometry, new definitions of fatigue limit, fracture energy and stress intensity factor, based on physical dimensions different from the classical ones, are discussed. Then, size-dependent laws for fatigue limit, threshold stress intensity range and fatigue crack growth rate are proposed. Some experimental results are examined in order to show how to apply such theoretical scaling laws.


MRS Bulletin ◽  
1989 ◽  
Vol 14 (8) ◽  
pp. 25-36 ◽  
Author(s):  
P.K. Liaw

Fracture mechanics technology is an effective tool for characterizing the rates of fatigue crack propagation. Generally, fatigue crack growth rate (da/dN) in each loading cycle can be presented as a function of stress intensity range (ΔK), where ΔK = Kmax — Kmin, Kmax and Kmin are the maximum and the minimum stress intensities, respectively. A typical fatigue crack growth rate curve of da/dN versus ΔK can be divided into three regimes, i.e., Stage I (near-threshold), Stage II (Paris), and Stage III (fast) crack growth regions, as shown in Figure 1.Depending on the region of crack growth, fatigue crack growth behavior can be sensitive to microstructure, environment, and loading conditions [e.g., R (load) ratio = Kmin / Kmax]. In the nearthreshold region, fatigue crack growth rates are very slow, ranging from approximately 10−10 to 10−8 m/cycle. In this region, the fatigue crack growth rate curve eventually reaches a threshold stress intensity range, ΔKth, below which the crack would not grow or grow at an extremely slow rate. Typically, the value of ΔKth is operationally defined as the stress intensity range which gives a corresponding crack growth rate of 10−10 m/cycle. In the nearthreshold region, the influence of microstructure, environment, and load ratio on the rates of crack propagation is very significant.


2021 ◽  
Author(s):  
Susumu Terada ◽  
Toshio Yoshida

Abstract In Table KD-430 and KD-430M of ASME Section VIII Division 3 (hereinafter called ASME Div. 3), there were no fatigue crack growth rate factors and threshold value of stress intensity factor range for carbon and low alloy steels with yield strength less than or equal to 620 MPa. These fatigue crack growth rate factors and threshold value of stress intensity factor range for ferritic steels with intermediate strength were also necessary for designing ASME Div. 3 vessels. We investigated the fatigue crack growth rates given in various standards. Especially Bloom’s paper related to ASME Sec. XI was investigated in detail. The test results on fatigue crack growth rate under various stress intensity range ratio in Bloom’s paper were compared with test results in other references. An equation for fatigue crack growth corrected by the stress intensity factor ratio was developed based on our investigation. The equation developed for fatigue crack growth was confirmed to agree with the test data in Bloom’s paper for negative and positive R ratios. Hence this equation, which was appropriate for a wide range of positive and negative R ratios, was proposed for ASME Div. 3. The addition of the threshold value of the stress intensity factor range for intermediate strength ferritic steels was also proposed. The fatigue crack growth rate factors at room temperature were provided in Table KD-430 and KD-430M of ASME Div. 3. As the operating temperature is higher than room temperature, the temperature correction is necessary for calculating fatigue crack growth. The temperature correction method in KD-4 of ASME Div. 3 was also proposed. These proposed changes except minimum threshold value were approved by Board in 2018 and they were reflected in 2019 Edition. The minimum threshold value was approved by the Board in 2021. It will be reflected in 2021 Edition. The background of these proposed changes is shown in this paper.


Sign in / Sign up

Export Citation Format

Share Document