fatigue limit
Recently Published Documents


TOTAL DOCUMENTS

1178
(FIVE YEARS 174)

H-INDEX

42
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 560
Author(s):  
Wenbin Cai ◽  
Wen Li ◽  
Jinze Xu

During the oil production process, sucker rods are subjected to cyclic alternating load. After a certain number of cycles, a sucker rod can experience fatigue failure. The number of cycles is called fatigue life (N), and the accurate relationship between maximum stress (S) and fatigue life (N) under a certain reliability (P), namely the P-S-N curve, is an important basis for the reliability analysis and fatigue life prediction of sucker rods. The Basquin model, based on log-normal distribution, is widely used for fitting the P-S-N curves of sucker rods. Due to the limitation of this model, it is difficult to extrapolate the conclusion obtained from a finite fatigue region to the high-cycle or ultra-high-cycle fatigue region, which makes it impossible to estimate the fatigue limit of the sucker rod. Compared to the log-normal distribution, Weibull distribution causes the sucker rod to have a minimum safety life, namely the safety life at 100% survival rate, which complies with the fatigue characteristics of the sucker rod and is more in line with the actual situation. In this study, the fatigue data for ultra-high-strength HL and HY grade sucker rods were obtained through experimental fatigue tests. A new fatigue life model was established and the P-S-N curves of two types of ultra-high strength sucker rods were obtained. For HL- and HY-type ultra-high strength sucker rods, the average error between the fitting result and fatigue test value is 1.25% and 4.39%, respectively. Compared to the S-N curve fitting result obtained from the Basquin model commonly used for sucker rods, the new model based on three-parameter Weibull distribution provides better fitting precision and can estimate fatigue limit more accurately, so this model is more suitable for estimating fatigue life and can better guide the design of ultra-high strength sucker rod strings.


2022 ◽  
pp. 37-65
Author(s):  
M. Mlikota

This study deals with the numerical estimation of the fatigue life represented in the form of strength-life (S-N, or Wöhler) curves of metals with different crystallographic structures, namely body-centered cubic (BCC) and face-centered cubic (FCC). Their life curves are determined by analyzing the initiation of a short crack under the influence of microstructure and subsequent growth of the long crack, respectively. Micro-models containing microstructures of the materials are set up by using the finite element method (FEM) and are applied in combination with the Tanaka-Mura (TM) equation in order to estimate the number of cycles required for the crack initiation. The long crack growth analysis is conducted using the Paris law. The study shows that the crystallographic structure is not the predominant factor that determines the shape and position of the fatigue life curve in the S-N diagram, but it is rather the material parameter known as the critical resolved shear stress (CRSS). Even though it is an FCC material, the investigated austenitic stainless steel AISI 304 shows an untypically high fatigue limit (208 MPa), which is higher than the fatigue limit of the BCC vanadium-based micro-alloyed forging steel AISI 1141 (152 MPa).


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Shiori Tsuchiya ◽  
Koji Takahashi

Additive-manufactured metals have a low fatigue limit due to the defects formed during the manufacturing process. Surface defects, in particular, considerably degrade the fatigue limit. In order to expand the application range of additive-manufactured metals, it is necessary to improve the fatigue limit and render the surface defects harmless. This study aims to investigate the effect of laser peening (LP) on the fatigue strength of additive-manufactured maraging steel with crack-like surface defects. Semicircular surface slits with depths of 0.2 and 0.6 mm are introduced on the specimen surface, and plane bending-fatigue tests are performed. On LP application, compressive residual stress is introduced from the specimen surface to a depth of 0.7 mm and the fatigue limit increases by 114%. In a specimen with a 0.2 mm deep slit, LP results in a high-fatigue-limit equivalent to that of a smooth specimen. Therefore, a semicircular slit with a depth of 0.2 mm can be rendered harmless by LP in terms of the fatigue limit. The defect size of a 0.2 mm deep semicircular slit is greater than that of the largest defect induced by additive manufacturing (AM). Thus, the LP process can contribute to improving the reliability of additive-manufactured metals. Compressive residual stress is the dominant factor in improving fatigue strength and rendering surface defects harmless. Moreover, the trend of the defect size that can be rendered harmless, estimated based on fracture mechanics, is consistent with the experimental results.


2021 ◽  
Vol 7 (1) ◽  
pp. 56-65
Author(s):  
Cuong Bui Manh ◽  
Duong Nguyen Van ◽  
Si Do Van ◽  
Manh Phan Van ◽  
Van Thao Le

This research aims to investigate the effects of vibration amplitude in vibratory stress relief (VSR) on the fatigue strength of structures with residual stress. Experiments are carried out on specimens with residual stress generated by local heating. Flat specimens made of A36 steel are prepared to be suitable for setting up fatigue bending tests on a vibrating table. Several groups of samples are subjected to VSR at resonant frequencies with different acceleration amplitudes. The results show that VSR has an important influence on the residual stress and fatigue limit of steel specimens. The maximum residual stress in the samples is reduced about 73% when the amplitude of vibration acceleration is 57 m/s2. The VSR method can also improve the fatigue limit by up to 14% for steel samples with residual stress.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7726
Author(s):  
Manuel Cabaleiro ◽  
Rafael Comesaña ◽  
Cristina González-Gaya ◽  
Carlos Caamaño

Among the most commonly used materials in the construction of structures in the last two centuries are iron and steel. Clamp joints are a suitable type of joint when it is necessary to rehabilitate or modify a historical steel structure for new uses, reinforcing or modifying it with new beams, without the need to drill or weld on the original structure. The clamps allow beams to be joined with a flange (such as I-beams) without the need for any prior operation on the beams and allow the manufacture of completely removable and reconfigurable structures. Developing and analysing this type of fully removable and reconfigurable structure is necessary. To date, no studies have been carried out on the fatigue behaviour of steel joints by clamps, especially taking into account their main geometric characteristics, such as the size of the clamp levers. In this work, an analytical model is proposed that allows for the analysis of the number of cycles and the fatigue limit of clamp joints as a function of the size of the clamp levers. In addition, various fatigue tests are performed with different clamp sizes. The experimental results are compared with those obtained with the proposed methodology. Finally, the relationships between the lever length and the fatigue behaviour of the clamp joints have been determined. It is concluded that an increase in the size of the front lever is associated to a decrease in the fatigue limit. On the contrary, if the size of the rear lever is increased, the fatigue limit of the joint increases. In general, according to the obtained results, the resistance of the joint can be reduced to approximately one third when it is subjected to fatigue loads.


2021 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Yuki Ogawa ◽  
Taiju Horita ◽  
Naoki Iwatani ◽  
Kota Kadoi ◽  
Daiki Shiozawa ◽  
...  

To optimize welding conditions that ensure the safety and reliability of laser welds, this study established an evaluation method of the fatigue strength for the laser welds of steel sheets over a short period of time. This study focuses on a fatigue limit estimation based on dissipated energy which is caused by micro plastic deformation. As a result, the area at which the temperature changes, due to dissipated energy, is locally high is the fracture origin of the laser welds. The fatigue limit of the laser welds is almost the same as the stress amplitude at which a temperature change occurs due to dissipated energy.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6997
Author(s):  
Till Julian Adam ◽  
Wibke Exner ◽  
Peter Wierach

Advanced nanoparticle-reinforced glass fibre composites represent a promising approach to improving the service life of fatigue-loaded structures such as wind turbine rotor blades. However, processing particle-reinforced resins using advanced infusion techniques is problematic due to, for example, higher viscosity as well as filtering effects. In this work, the effects of boehmite nanoparticles on viscosity, static properties and fatigue life are investigated experimentally. Whereas rheological analysis reveals a significant increase of viscosity in the case of pristine boehmite particles, an additional taurine surface modification of the particles can effectively reduce viscosity increase. As regards mechanical properties, significant improvements of both static as well as fatigue properties are found. The addition of 15 wt.% of boehmite particles increases fatigue life by a maximum of 270% compared to the unmodified fibre-reinforced epoxy. Transmitted light-based investigation of the damage mechanisms shows delayed initiation and smaller growth rates for laminates containing boehmite particles. At the same time, the observed mechanisms and their accumulation along the relative cycle number do not change significantly. In addition, by characterising autonomous heating, the so-called Risitano fatigue limit is determined. The results reveal that with increasing particle content there is an increase in the fatigue limit.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1754
Author(s):  
Chi Liu ◽  
Liyong Ma ◽  
Ziyong Zhang ◽  
Zhuo Fu ◽  
Lijuan Liu

The 2524-T3 aluminum alloy was subjected to fatigue tests under the conditions of R = 0, 3.5% NaCl corrosion solution, and the loading cycles of 106, and the S-N curve was obtained. The horizontal fatigue limit was 169 MPa, which is slightly higher than the longitudinal fatigue limit of 163 MPa. In addition, detailed microstructural analysis of the micro-morphological fatigue failure features was carried out. The influence mechanism of corrosion on the fatigue crack propagation of 2524-T3 aluminum alloy was discussed. The fatigue source characterized by cleavage and fracture mainly comes from corrosion pits, whose expansion direction is perpendicular to the principal stress direction. The stable propagation zone is characterized by strip fractures. The main feature of the fracture in the fracture zone is equiaxed dimples. The larger dimples are mixed with second-phase particles ranging in size from 1 to 5 μm. There is almost a one-to-one correspondence between the dimples and the second-phase particles. The fracture mechanism of 2524 alloy at this stage is transformed into a micro-holes connection mechanism, and the nucleation of micropores is mainly derived from the second-phase particles.


Sign in / Sign up

Export Citation Format

Share Document