FIR Wiener Filters and Random Signals

2021 ◽  
pp. 297-331
Author(s):  
Tom J. Moir
Author(s):  
K.-H. Herrmann ◽  
E. Reuber ◽  
P. Schiske

Aposteriori deblurring of high resolution electron micrographs of weak phase objects can be performed by holographic filters [1,2] which are arranged in the Fourier domain of a light-optical reconstruction set-up. According to the diffraction efficiency and the lateral position of the grating structure, the filters permit adjustment of the amplitudes and phases of the spatial frequencies in the image which is obtained in the first diffraction order.In the case of bright field imaging with axial illumination, the Contrast Transfer Functions (CTF) are oscillating, but real. For different imageforming conditions and several signal-to-noise ratios an extensive set of Wiener-filters should be available. A simple method of producing such filters by only photographic and mechanical means will be described here.A transparent master grating with 6.25 lines/mm and 160 mm diameter was produced by a high precision computer plotter. It is photographed through a rotating mask, plotted by a standard plotter.


2019 ◽  
Vol 2019 (47) ◽  
pp. 26-33
Author(s):  
I. M. Javorskyj ◽  
◽  
O. Y. Dzeryn ◽  
R. M. Yuzefovych ◽  
◽  
...  

Geophysics ◽  
1973 ◽  
Vol 38 (2) ◽  
pp. 310-326 ◽  
Author(s):  
R. J. Wang ◽  
S. Treitel

The normal equations for the discrete Wiener filter are conventionally solved with Levinson’s algorithm. The resultant solutions are exact except for numerical roundoff. In many instances, approximate rather than exact solutions satisfy seismologists’ requirements. The so‐called “gradient” or “steepest descent” iteration techniques can be used to produce approximate filters at computing speeds significantly higher than those achievable with Levinson’s method. Moreover, gradient schemes are well suited for implementation on a digital computer provided with a floating‐point array processor (i.e., a high‐speed peripheral device designed to carry out a specific set of multiply‐and‐add operations). Levinson’s method (1947) cannot be programmed efficiently for such special‐purpose hardware, and this consideration renders the use of gradient schemes even more attractive. It is, of course, advisable to utilize a gradient algorithm which generally provides rapid convergence to the true solution. The “conjugate‐gradient” method of Hestenes (1956) is one of a family of algorithms having this property. Experimental calculations performed with real seismic data indicate that adequate filter approximations are obtainable at a fraction of the computer cost required for use of Levinson’s algorithm.


Sign in / Sign up

Export Citation Format

Share Document