Fixed Point Subgradient Algorithm

Author(s):  
Alexander J. Zaslavski
Filomat ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 1721-1729
Author(s):  
Seyed Aleomraninejad ◽  
Kanokwan Sitthithakerngkiet ◽  
Poom Kumam

In this paper anew algorithm considered on a real Hilbert space for finding acommonpoint in the solution set of a class of pseudomonotone equilibrium problem and the set of fixed points of nonexpansive mappings. We produce this algorithm by mappings Tk that are approximations of non-expansive mapping T. The strong convergence theorem of the proposed algorithms is investigated. Our results generalize some recent results in the literature.


2003 ◽  
Author(s):  
Robin R. Vallacher ◽  
Andrzej Nowak ◽  
Matthew Rockloff
Keyword(s):  

1981 ◽  
Vol 1 (2) ◽  
pp. 133-144 ◽  
Author(s):  
Shaozhong Chen ◽  
Zuoshu Liu

1992 ◽  
Vol 139 (1) ◽  
pp. 50 ◽  
Author(s):  
P.G. Harrison ◽  
F. Naraghi

2000 ◽  
Vol 39 (02) ◽  
pp. 118-121 ◽  
Author(s):  
S. Akselrod ◽  
S. Eyal

Abstract:A simple nonlinear beat-to-beat model of the human cardiovascular system has been studied. The model, introduced by DeBoer et al. was a simplified linearized version. We present a modified model which allows to investigate the nonlinear dynamics of the cardiovascular system. We found that an increase in the -sympathetic gain, via a Hopf bifurcation, leads to sustained oscillations both in heart rate and blood pressure variables at about 0.1 Hz (Mayer waves). Similar oscillations were observed when increasing the -sympathetic gain or decreasing the vagal gain. Further changes of the gains, even beyond reasonable physiological values, did not reveal another bifurcation. The dynamics observed were thus either fixed point or limit cycle. Introducing respiration into the model showed entrainment between the respiration frequency and the Mayer waves.


2016 ◽  
Vol 2017 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Muhammad Usman Ali ◽  
◽  
Tayyab Kamran ◽  
Mihai Postolache ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document