Multilevel Preconditioners with Adaptive Mesh Refinements

2021 ◽  
pp. 307-328
Author(s):  
Ernst P. Stephan ◽  
Thanh Tran
2019 ◽  
Vol 810 ◽  
pp. 137-142 ◽  
Author(s):  
Stanislav Sysala ◽  
Radim Blaheta ◽  
Alexej Kolcun ◽  
Jiří Ščučka ◽  
Kamil Souček ◽  
...  

The paper is focused on computation of a compressive strength of composite materials by limit analysis. This method enables to determine the strength or other types of limit loads by solution of a specific optimization problem. It is also capable to predict failure zones. Abilities of the method are investigated on a particular composite -- a laboratory prepared sample consisting of a hard coal matrix and a polyurethane binder. This sample is chosen due to available CT images of the inner structure and laboratory experiments. Appropriate yield criteria are proposed for the coal and the binder in order to define the limit analysis problem. This problem is penalized and then discretized by higher order finite elements. For numerical solution, the semismooth Newton method and adaptive mesh refinements are also used. Numerical experiments in 2D for various CT scans and material parameters are performed.


2020 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Stefan A. Funken ◽  
Anja Schmidt

AbstractThis paper deals with the efficient implementation of various adaptive mesh refinements in two dimensions in Matlab. We give insights into different adaptive mesh refinement strategies allowing triangular and quadrilateral grids with and without hanging nodes. Throughout, the focus is on an efficient implementation by utilization of reasonable data structure, use of Matlab built-in functions and vectorization. This paper shows the transition from theory to implementation in a clear way and thus is meant to serve educational purposes of how to implement a method while keeping the code as short as possible – an implementation of an efficient adaptive mesh refinement is possible within 71 lines of Matlab. Numerical experiments underline the efficiency of the code and show the flexible deployment in different contexts where adaptive mesh refinement is in use. Our implementation is accessible and easy-to-understand and thus considered to be a valuable tool in research and education.


2020 ◽  
Vol 27 (1) ◽  
pp. 29-38
Author(s):  
Teng Zhang ◽  
Junsheng Ren ◽  
Lu Liu

AbstractA three-dimensional (3D) time-domain method is developed to predict ship motions in waves. To evaluate the Froude-Krylov (F-K) forces and hydrostatic forces under the instantaneous incident wave profile, an adaptive mesh technique based on a quad-tree subdivision is adopted to generate instantaneous wet meshes for ship. For quadrilateral panels under both mean free surface and instantaneous incident wave profiles, Froude-Krylov forces and hydrostatic forces are computed by analytical exact pressure integration expressions, allowing for considerably coarse meshes without loss of accuracy. And for quadrilateral panels interacting with the wave profile, F-K and hydrostatic forces are evaluated following a quad-tree subdivision. The transient free surface Green function (TFSGF) is essential to evaluate radiation and diffraction forces based on linear theory. To reduce the numerical error due to unclear partition, a precise integration method is applied to solve the TFSGF in the partition computation time domain. Computations are carried out for a Wigley hull form and S175 container ship, and the results show good agreement with both experimental results and published results.


2018 ◽  
Vol 50 (04) ◽  
pp. 561-570
Author(s):  
I. A. QAZI ◽  
A. F. ABBASI ◽  
M. S. JAMALI ◽  
INTIZAR INTIZAR ◽  
A. TUNIO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document