scholarly journals Constructive Mathematics, Church’s Thesis, and Free Choice Sequences

Author(s):  
D. A. Turner
1991 ◽  
Vol 56 (4) ◽  
pp. 1496-1499 ◽  
Author(s):  
Craig A. Smoryński

1991 ◽  
Vol 56 (4) ◽  
pp. 1349-1354 ◽  
Author(s):  
Hajime Ishihara

AbstractThe purpose of this paper is an axiomatic study of the interrelations between certain continuity properties. We show that every mapping is sequentially continuous if and only if it is sequentially nondiscontinuous and strongly extensional, and that “every mapping is strongly extensional”, “every sequentially nondiscontinuous mapping is sequentially continuous”, and a weak version of Markov's principle are equivalent. Also, assuming a consequence of Church's thesis, we prove a version of the Kreisel-Lacombe-Shoenfield-Tseĭtin theorem.


1971 ◽  
Vol 36 (2) ◽  
pp. 309-315 ◽  
Author(s):  
Joan Rand Moschovakis

In 1936 Alonzo Church proposed the following thesis: Every effectively computable number-theoretic function is general recursive. The classical mathematician can easily give examples of nonrecursive functions, e.g. by diagonalizing a list of all general recursive functions. But since no such function has been found which is effectively computable, there is as yet no classical evidence against Church's Thesis.The intuitionistic mathematician, following Brouwer, recognizes at least two notions of function: the free-choice sequence (or ordinary number-theoretic function, thought of as the ever-finite but ever-extendable sequence of its values) and the sharp arrow (or effectively definable function, all of whose values can be specified in advance).


2000 ◽  
Vol 8 (3) ◽  
pp. 244-258 ◽  
Author(s):  
ROBERT BLACK

1987 ◽  
Vol 28 (4) ◽  
pp. 490-498 ◽  
Author(s):  
Stephen C. Kleene

1965 ◽  
Vol 30 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Hilary Putnam

The purpose of this paper is to present two groups of results which have turned out to have a surprisingly close interconnection. The first two results (Theorems 1 and 2) were inspired by the following question: we know what sets are “decidable” — namely, the recursive sets (according to Church's Thesis). But what happens if we modify the notion of a decision procedure by (1) allowing the procedure to “change its mind” any finite number of times (in terms of Turing Machines: we visualize the machine as being given an integer (or an n-tuple of integers) as input. The machine then “prints out” a finite sequence of “yesses” and “nos”. The last “yes” or “no” is always to be the correct answer.); and (2) we give up the requirement that it be possible to tell (effectively) if the computation has terminated? I.e., if the machine has most recently printed “yes”, then we know that the integer put in as input must be in the set unless the machine is going to change its mind; but we have no procedure for telling whether the machine will change its mind or not.The sets for which there exist decision procedures in this widened sense are decidable by “empirical” means — for, if we always “posit” that the most recently generated answer is correct, we will make a finite number of mistakes, but we will eventually get the correct answer. (Note, however, that even if we have gotten to the correct answer (the end of the finite sequence) we are never sure that we have the correct answer.)


Sign in / Sign up

Export Citation Format

Share Document