Leveraging Syntactic Dependency and Lexical Similarity for Neural Relation Extraction

2021 ◽  
pp. 285-299
Author(s):  
Yashen Wang
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mingjing Tang ◽  
Tong Li ◽  
Wei Wang ◽  
Rui Zhu ◽  
Zifei Ma ◽  
...  

Software knowledge community contains a large scale of software knowledge entities with complex structure and rich semantic relations. Semantic relation extraction of software knowledge entities is a critical task for software knowledge graph construction, which has an important impact on knowledge graph based tasks such as software document generation and software expert recommendation. Due to the problems of entity sparsity, relation ambiguity, and the lack of annotated dataset in user-generated content of software knowledge community, it is difficult to apply existing methods of relation extraction in the software knowledge domain. To address these issues, we propose a novel software knowledge entity relation extraction model which incorporates entity-aware information with syntactic dependency information. Bidirectional Gated Recurrent Unit (Bi-GRU) and Graph Convolutional Networks (GCN) are used to learn the features of contextual semantic representation and syntactic dependency representation, respectively. To obtain more syntactic dependency information, a weight graph convolutional network based on Newton’s cooling law is constructed by calculating a weight adjacency matrix. Specifically, an entity-aware attention mechanism is proposed to integrate the entity information and syntactic dependency information to improve the prediction performance of the model. Experiments are conducted on a dataset which is constructed based on texts of the StackOverflow and show that the proposed model has better performance than the benchmark models.


Author(s):  
Prachi Jain ◽  
Shikhar Murty ◽  
Mausam . ◽  
Soumen Chakrabarti

This paper analyzes the varied performance of Matrix Factorization (MF) on the related tasks of relation extraction and knowledge-base completion, which have been unified recently into a single framework of knowledge-base inference (KBI) [Toutanova et al., 2015]. We first propose a new evaluation protocol that makes comparisons between MF and Tensor Factorization (TF) models fair. We find that this results in a steep drop in MF performance. Our analysis attributes this to the high out-of-vocabulary (OOV) rate of entity pairs in test folds of commonly-used datasets. To alleviate this issue, we propose three extensions to MF. Our best model is a TF-augmented MF model. This hybrid model is robust and obtains strong results across various KBI datasets.


2014 ◽  
Author(s):  
Miao Fan ◽  
Deli Zhao ◽  
Qiang Zhou ◽  
Zhiyuan Liu ◽  
Thomas Fang Zheng ◽  
...  

2009 ◽  
Vol 19 (11) ◽  
pp. 2843-2852 ◽  
Author(s):  
Jin-Xiu CHEN ◽  
Dong-Hong JI
Keyword(s):  

2012 ◽  
Vol 23 (10) ◽  
pp. 2572-2585 ◽  
Author(s):  
Yu CHEN ◽  
De-Quan ZHENG ◽  
Tie-Jun ZHAO
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document