Biomedical Knowledge Graph Embeddings for Personalized Medicine

2021 ◽  
pp. 584-595
Author(s):  
Joana Vilela ◽  
Muhammad Asif ◽  
Ana Rita Marques ◽  
João Xavier Santos ◽  
Célia Rasga ◽  
...  
2020 ◽  
Author(s):  
David Chang ◽  
Ivana Balažević ◽  
Carl Allen ◽  
Daniel Chawla ◽  
Cynthia Brandt ◽  
...  

2021 ◽  
pp. 410-426
Author(s):  
Nitisha Jain ◽  
Trung-Kien Tran ◽  
Mohamed H. Gad-Elrab ◽  
Daria Stepanova

2019 ◽  
Vol 35 (18) ◽  
pp. 3538-3540 ◽  
Author(s):  
Mehdi Ali ◽  
Charles Tapley Hoyt ◽  
Daniel Domingo-Fernández ◽  
Jens Lehmann ◽  
Hajira Jabeen

Abstract Summary Knowledge graph embeddings (KGEs) have received significant attention in other domains due to their ability to predict links and create dense representations for graphs’ nodes and edges. However, the software ecosystem for their application to bioinformatics remains limited and inaccessible for users without expertise in programing and machine learning. Therefore, we developed BioKEEN (Biological KnowlEdge EmbeddiNgs) and PyKEEN (Python KnowlEdge EmbeddiNgs) to facilitate their easy use through an interactive command line interface. Finally, we present a case study in which we used a novel biological pathway mapping resource to predict links that represent pathway crosstalks and hierarchies. Availability and implementation BioKEEN and PyKEEN are open source Python packages publicly available under the MIT License at https://github.com/SmartDataAnalytics/BioKEEN and https://github.com/SmartDataAnalytics/PyKEEN Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document