The Spectrum of a Composition Operator and Calderón’s Complex Interpolation

2010 ◽  
pp. 451-467 ◽  
Author(s):  
Matthew A. Pons
2003 ◽  
Vol 45 (3) ◽  
pp. 351-358 ◽  
Author(s):  
David B. Pokorny ◽  
Jonathan E. Shapiro
Keyword(s):  

2020 ◽  
Vol 23 (4) ◽  
pp. 1125-1140
Author(s):  
Andriy Lopushansky ◽  
Oleh Lopushansky ◽  
Anna Szpila

AbstractAn fractional abstract Cauchy problem generated by a sectorial operator is investigated. An inequality of coercivity type for its solution with respect to a complex interpolation scale generated by a sectorial operator with the same parameters is established. An application to differential parabolic initial-boundary value problems in bounded domains with a fractional time derivative is shown.


2013 ◽  
Vol 95 (2) ◽  
pp. 158-168
Author(s):  
H.-Q. BUI ◽  
R. S. LAUGESEN

AbstractEvery bounded linear operator that maps ${H}^{1} $ to ${L}^{1} $ and ${L}^{2} $ to ${L}^{2} $ is bounded from ${L}^{p} $ to ${L}^{p} $ for each $p\in (1, 2)$, by a famous interpolation result of Fefferman and Stein. We prove ${L}^{p} $-norm bounds that grow like $O(1/ (p- 1))$ as $p\downarrow 1$. This growth rate is optimal, and improves significantly on the previously known exponential bound $O({2}^{1/ (p- 1)} )$. For $p\in (2, \infty )$, we prove explicit ${L}^{p} $ estimates on each bounded linear operator mapping ${L}^{\infty } $ to bounded mean oscillation ($\mathit{BMO}$) and ${L}^{2} $ to ${L}^{2} $. This $\mathit{BMO}$ interpolation result implies the ${H}^{1} $ result above, by duality. In addition, we obtain stronger results by working with dyadic ${H}^{1} $ and dyadic $\mathit{BMO}$. The proofs proceed by complex interpolation, after we develop an optimal dyadic ‘good lambda’ inequality for the dyadic $\sharp $-maximal operator.


2013 ◽  
Vol 318 ◽  
pp. 100-107
Author(s):  
Zhen Shen ◽  
Biao Wang ◽  
Hui Yang ◽  
Yun Zheng

Six kinds of interpolation methods, including projection-shape function method, three-dimensional linear interpolation method, optimal interpolation method, constant volume transformation method and so on, were adoped in the study of interpolation accuracy. From the point of view about the characterization of matching condition of two different grids and interpolation function, the infuencing factor on the interpolation accuracy was studied. The results revealed that different interpolation methods had different interpolation accuracy. The projection-shape function interpolation method had the best effect and the more complex interpolation function had lower accuracy. In many cases, the matching condition of two grids had much greater impact on the interpolation accuracy than the method itself. The error of interpolation method is inevitable, but the error caused by the grid quality could be reduced through efforts.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Piotr Budzyński

We construct an unbounded hyponormal composition operatorCϕinL2-space such that the domains ofCϕ2andCϕ2are trivial.


1994 ◽  
Vol 120 (2) ◽  
pp. 380-402 ◽  
Author(s):  
M. Fan ◽  
S. Kaijser

2015 ◽  
Vol 276 (2) ◽  
pp. 287-307 ◽  
Author(s):  
Félix Cabello Sánchez ◽  
Jesús Castillo ◽  
Nigel Kalton

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Guanghua He ◽  
Xi Fu ◽  
Hancan Zhu

We study Bloch-type spaces of minimal surfaces from the unit disk D into Rn and characterize them in terms of weighted Lipschitz functions. In addition, the boundedness of a composition operator Cϕ acting between two Bloch-type spaces is discussed.


Sign in / Sign up

Export Citation Format

Share Document