Offbeat Integral Geometry on Symmetric Spaces

Author(s):  
Valery V. Volchkov ◽  
Vitaly V. Volchkov
1995 ◽  
Vol 137 ◽  
pp. 33-53 ◽  
Author(s):  
Hiroyuki Tasaki

The theory of integral geometry has mainly treated identities between integral invariants of submanifolds in Riemannian homogeneous spaces like as dμg(g) where M and N are submanifolds in a Riemannian homogeneous spaces of a Lie group G and I(M ∩ gN) is an integral invariant of M ∩ gN. For example Poincaré’s formula is one of typical identities in integral geometry, which is as follows. We denote by M(R2) the identity component of the group of isometries of the plane R2 with a suitable invariant measure μM(R2).


2012 ◽  
Vol 170 (2) ◽  
pp. 195-203 ◽  
Author(s):  
E. K. Narayanan ◽  
A. Sitaram

2018 ◽  
Vol 2018 (1) ◽  
pp. 35-46
Author(s):  
Vladimir Chilin ◽  
◽  
Aleksandr Veksler ◽  

Author(s):  
SANJIV KUMAR GUPTA ◽  
KATHRYN E. HARE

Abstract Let $G/K$ be an irreducible symmetric space, where G is a noncompact, connected Lie group and K is a compact, connected subgroup. We use decay properties of the spherical functions to show that the convolution product of any $r=r(G/K)$ continuous orbital measures has its density function in $L^{2}(G)$ and hence is an absolutely continuous measure with respect to the Haar measure. The number r is approximately the rank of $G/K$ . For the special case of the orbital measures, $\nu _{a_{i}}$ , supported on the double cosets $Ka_{i}K$ , where $a_{i}$ belongs to the dense set of regular elements, we prove the sharp result that $\nu _{a_{1}}\ast \nu _{a_{2}}\in L^{2},$ except for the symmetric space of Cartan class $AI$ when the convolution of three orbital measures is needed (even though $\nu _{a_{1}}\ast \nu _{a_{2}}$ is absolutely continuous).


Sign in / Sign up

Export Citation Format

Share Document