Variational Methods for Multiparametric Eigenvalue Problems

Author(s):  
G. F. Roach
2021 ◽  
Vol 41 (4) ◽  
pp. 489-507
Author(s):  
Abdelrachid El Amrouss ◽  
Omar Hammouti

Let \(n\in\mathbb{N}^{*}\), and \(N\geq n\) be an integer. We study the spectrum of discrete linear \(2n\)-th order eigenvalue problems \[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad & i\in[0, 2n-1]_{\mathbb{Z}},\end{cases}\] where \(\lambda\) is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear \(2n\)-th order problems by applying the variational methods and critical point theory.


2010 ◽  
Vol 53 (2) ◽  
pp. 301-312 ◽  
Author(s):  
DONAL O'REGAN ◽  
ALEKSANDRA ORPEL

AbstractWe investigate eigenvalue intervals for the Dirichlet problem when the nonlinearity may be singular at t = 0 or t = 1. Our approach is based on variational methods and cover both sublinear and superlinear cases. We also study the continuous dependence of solutions on functional parameters.


2008 ◽  
Vol 51 (3) ◽  
pp. 565-579 ◽  
Author(s):  
Paul Binding ◽  
Patrick J. Browne

AbstractThe nonlinear eigenvalue problemfor 0 ≤ x < ∞, fixed p ∈ (1, ∞), and with y′(0)/y(0) specified, is studied under conditions on q related to those of Brinck and Molanov. Topics include Sturmian results, connections between problems on finite intervals and the half-line, and variational principles.


Sign in / Sign up

Export Citation Format

Share Document