1968 ◽  
Vol 8 (2) ◽  
pp. 275-286 ◽  
Author(s):  
A. L. Andrew

The Ritz method reduces eigenvalue problems involving linear operators on infinite dimensional spaces to finite matrix eigenvalue problems. This paper shows that for a certain class of linear operators it is possible to choose the coordinate functions so that numerical solution of the matrix equations is considerably simplified, especially when the matrices are large. The method is applied to the problem of overtone pulsations of stars.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Nasser Hassan Sweilam ◽  
Tamer Mostafa Al-Ajami ◽  
Ronald H. W. Hoppe

We present two different approaches for the numerical solution of fractional optimal control problems (FOCPs) based on a spectral method using Chebyshev polynomials. The fractional derivative is described in the Caputo sense. The first approach follows the paradigm “optimize first, then discretize” and relies on the approximation of the necessary optimality conditions in terms of the associated Hamiltonian. In the second approach, the state equation is discretized first using the Clenshaw and Curtis scheme for the numerical integration of nonsingular functions followed by the Rayleigh-Ritz method to evaluate both the state and control variables. Two illustrative examples are included to demonstrate the validity and applicability of the suggested approaches.


Wear ◽  
1981 ◽  
Vol 72 (3) ◽  
pp. 371-376 ◽  
Author(s):  
B. Sivák ◽  
M. Sivák

Sign in / Sign up

Export Citation Format

Share Document