interior point methods
Recently Published Documents


TOTAL DOCUMENTS

526
(FIVE YEARS 35)

H-INDEX

49
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2030
Author(s):  
Janez Povh

The graph bandwidth problem, where one looks for a labeling of graph vertices that gives the minimum difference between the labels over all edges, is a classical NP-hard problem that has drawn a lot of attention in recent decades. In this paper, we focus on the so-called Embed and Project Algorithm (EPA) introduced by Blum et al. in 2000,which in the main part has to solve a semidefinite programming relaxation with exponentially many linear constraints. We present several theoretical properties of this special semidefinite programming problem (SDP) and a cutting-plane-like algorithm to solve it, which works very efficiently in combination with interior-point methods or with the bundle method. Extensive numerical results demonstrate that this algorithm, which has only been studied theoretically so far, in practice gives very good labeling for graphs with n≤1000.


Author(s):  
David Ek ◽  
Anders Forsgren

AbstractThe focus in this paper is interior-point methods for bound-constrained nonlinear optimization, where the system of nonlinear equations that arise are solved with Newton’s method. There is a trade-off between solving Newton systems directly, which give high quality solutions, and solving many approximate Newton systems which are computationally less expensive but give lower quality solutions. We propose partial and full approximate solutions to the Newton systems. The specific approximate solution depends on estimates of the active and inactive constraints at the solution. These sets are at each iteration estimated by basic heuristics. The partial approximate solutions are computationally inexpensive, whereas a system of linear equations needs to be solved for the full approximate solution. The size of the system is determined by the estimate of the inactive constraints at the solution. In addition, we motivate and suggest two Newton-like approaches which are based on an intermediate step that consists of the partial approximate solutions. The theoretical setting is introduced and asymptotic error bounds are given. We also give numerical results to investigate the performance of the approximate solutions within and beyond the theoretical framework.


2021 ◽  
pp. 129-164
Author(s):  
David G. Luenberger ◽  
Yinyu Ye

Sign in / Sign up

Export Citation Format

Share Document