Effective Quantum Number for Centrally Symmetric Potentials

Author(s):  
Yu. V. Tarbeyev ◽  
N. N. Trunov ◽  
A. A. Lobashev ◽  
V. V. Kukhar
Nanophotonics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 3557-3565
Author(s):  
Guorui Zhang ◽  
Ying Gu ◽  
Qihuang Gong ◽  
Jianjun Chen

AbstractDue to small optical mode volumes and linear polarizations of surface-plasmon-polariton (SPP) resonant modes in metallic antennas, it is very difficult to obtain complex emission patterns and polarizations for single-photon emitters. Herein, nonresonant enhancement in a silver nanowire is used to both enhance emission rates and extract a z-oriented dipole, and then the symmetry of metallic nanostructures is proposed to tailor the patterns and polarizations of single-photon emission. The emission pattern of a quantum dot located close to a metallic nanostructure with a symmetric axis is split into multiple flaps. The number of splitting flaps is equal to the order of the symmetric axis. Moreover, the electric vectors of the emitted photons become centrally symmetric about the symmetric axis. The above phenomena are well explained by both a simulation and an image dipole model. The structural-symmetry-tailoring mechanism may open up a new avenue in the design of multifunctional and novel quantum-plasmonic devices.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Henri Lehec ◽  
Xin Hua ◽  
Pierre Pillet ◽  
Patrick Cheinet

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
H. Hassanabadi ◽  
E. Maghsoodi ◽  
Akpan N. Ikot ◽  
S. Zarrinkamar

Spin and pseudospin symmetries of Dirac equation are solved under scalar and vector generalized isotonic oscillators and Cornell potential as a tensor interaction for arbitrary quantum number via the analytical ansatz approach. The spectrum of the system is numerically reported for typical values of the potential parameters.


1994 ◽  
Vol 27 (6) ◽  
pp. 2197-2211 ◽  
Author(s):  
A J Bracken ◽  
G F Melloy
Keyword(s):  

2012 ◽  
Vol 90 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Ningjiu Zhao ◽  
Yufang Liu

In this work, we employed the quasi-classical trajectory (QCT) method to study the vector correlations and the influence of the reagent initial rotational quantum number j for the reaction He + T2+ (v = 0, j = 0–3) → HeT+ + T on a new potential energy surface (PES). The PES was improved by Aquilanti co-workers (Chem. Phys. Lett. 2009. 469: 26–30). The polarization-dependent differential cross sections (PDDCSs) and the distributions of P(θr), P([Formula: see text]r), and P(θr, [Formula: see text]r) are presented in this work. The plots of the PDDCSs provide us with abundant information about the distribution of the product angular momentum polarization. The P(θr) is used to describe the correlation between k (the relative velocity of the reagent) and j′ (the product rotational angular momentum). The distribution of dihedral angle P([Formula: see text]r) shows the k–k′–j′ (k′ refers to the relative velocity of the product) correlation. The PDDCS calculations illustrate that the product of this reaction is mainly backward scatter and it has the strongest polarization in the backward and sideways scattering directions. At the same time, the results of the P([Formula: see text]r) demonstrate that the product HeT+ tends to be oriented along the positive direction of the y axis and it tends to rotate right-handedly in planes parallel to the scattering plane. Moreover, the distribution of the P(θr) manifests that the product angular momentum is aligned along different directions relative to k. The direction of the product alignment may be perpendicular, opposite, or parallel to k. Moreover, our calculations are independent of the initial rotational quantum number.


1972 ◽  
Vol 27 (6) ◽  
pp. 591-595 ◽  
Author(s):  
Jörn-Michael Keck ◽  
Günter Klar

The synthesis of the dihalogeno-tris-(4-dimethylamino-phenyl)-compounds Ar2EX2 (E = P, As, Sb; X = Cl, Br, J and E = Sb, X = F; E = Bi, X = Cl) is described. A generally valid correlation between the chemical shift of the n.m.r. signal of an atom and the atomic parameters electronegativity and principal quantum number of valence electrons is deduced.


Sign in / Sign up

Export Citation Format

Share Document