The Asymptotic Distribution of Lattice Points in Euclidean and Non-Euclidean Spaces

Author(s):  
Peter D. Lax ◽  
Ralph S. Phillips
SIAM Review ◽  
1965 ◽  
Vol 7 (2) ◽  
pp. 274-276 ◽  
Author(s):  
N. G. de Bruijn

SIAM Review ◽  
1963 ◽  
Vol 5 (2) ◽  
pp. 156-156
Author(s):  
Walter Weissblum

2020 ◽  
Vol 8 (1) ◽  
pp. 11-21
Author(s):  
S. M. Yaroshko ◽  
◽  
M. V. Zabolotskyy ◽  
T. M. Zabolotskyy ◽  
◽  
...  

The paper is devoted to the investigation of statistical properties of the sample estimator of the beta coefficient in the case when the weights of benchmark portfolio are constant and for the target portfolio, the global minimum variance portfolio is taken. We provide the asymptotic distribution of the sample estimator of the beta coefficient assuming that the asset returns are multivariate normally distributed. Based on the asymptotic distribution we construct the confidence interval for the beta coefficient. We use the daily returns on the assets included in the DAX index for the period from 01.01.2018 to 30.09.2019 to compare empirical and asymptotic means, variances and densities of the standardized estimator for the beta coefficient. We obtain that the bias of the sample estimator converges to zero very slowly for a large number of assets in the portfolio. We present the adjusted estimator of the beta coefficient for which convergence of the empirical variances to the asymptotic ones is not significantly slower than for a sample estimator but the bias of the adjusted estimator is significantly smaller.


Author(s):  
N. A. Balonin ◽  
M. B. Sergeev ◽  
J. Seberry ◽  
O. I. Sinitsyna

Introduction: The Hadamard conjecture about the existence of Hadamard matrices in all orders multiple of 4, and the Gauss problem about the number of points in a circle are among the most important turning points in the development of mathematics. They both stimulated the development of scientific schools around the world with an immense amount of works. There are substantiations that these scientific problems are deeply connected. The number of Gaussian points (Z3 lattice points) on a spheroid, cone, paraboloid or parabola, along with their location, determines the number and types of Hadamard matrices.Purpose: Specification of the upper and lower bounds for the number of Gaussian points (with odd coordinates) on a spheroid depending on the problem size, in order to specify the Gauss theorem (about the solvability of quadratic problems in triangular numbers by projections onto the Liouville plane) with estimates for the case of Hadamard matrices. Methods: The authors, in addition to their previous ideas about proving the Hadamard conjecture on the base of a one-to-one correspondence between orthogonal matrices and Gaussian points, propose one more way, using the properties of generalized circles on Z3 .Results: It is proved that for a spheroid, the lower bound of all Gaussian points with odd coordinates is equal to the equator radius R, the upper limit of the points located above the equator is equal to the length of this equator L=2πR, and the total number of points is limited to 2L. Due to the spheroid symmetry in the sector with positive coordinates (octant), this gives the values of R/8 and L/4. Thus, the number of Gaussian points with odd coordinates does not exceed the border perimeter and is no less than the relative share of the sector in the total volume of the figure.Practical significance: Hadamard matrices associated with lattice points have a direct practical significance for noise-resistant coding, compression and masking of video information.


Sign in / Sign up

Export Citation Format

Share Document