gauss theorem
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 36 (6) ◽  
pp. 359-379
Author(s):  
Kirill M. Terekhov

Abstract This article is dedicated to the general finite-volume framework used to discretize and solve saddle-point problems of various physics. The framework applies the Ostrogradsky–Gauss theorem to transform a divergent part of the partial differential equation into a surface integral, approximated by the summation of vector fluxes over interfaces. The interface vector fluxes are reconstructed using the harmonic averaging point concept resulting in the unique vector flux even in a heterogeneous anisotropic medium. The vector flux is modified with the consideration of eigenvalues in matrix coefficients at vector unknowns to address both the hyperbolic and saddle-point problems, causing nonphysical oscillations and an inf-sup stability issue. We apply the framework to several problems of various physics, namely incompressible elasticity problem, incompressible Navier–Stokes, Brinkman–Hazen–Dupuit–Darcy, Biot, and Maxwell equations and explain several nuances of the application. Finally, we test the framework on simple analytical solutions.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Gaetano Fiore ◽  
Thomas Weber

AbstractWe propose a general procedure to construct noncommutative deformations of an embedded submanifold M of $${\mathbb {R}}^n$$ R n determined by a set of smooth equations $$f^a(x)=0$$ f a ( x ) = 0 . We use the framework of Drinfel’d twist deformation of differential geometry of Aschieri et al. (Class Quantum Gravity 23:1883, 2006); the commutative pointwise product is replaced by a (generally noncommutative) $$\star $$ ⋆ -product determined by a Drinfel’d twist. The twists we employ are based on the Lie algebra $$\Xi _t$$ Ξ t of vector fields that are tangent to all the submanifolds that are level sets of the $$f^a$$ f a (tangent infinitesimal diffeomorphisms); the twisted Cartan calculus is automatically equivariant under twisted $$\Xi _t$$ Ξ t . We can consistently project a connection from the twisted $${\mathbb {R}}^n$$ R n to the twisted M if the twist is based on a suitable Lie subalgebra $${\mathfrak {e}}\subset \Xi _t$$ e ⊂ Ξ t . If we endow $${\mathbb {R}}^n$$ R n with a metric, then twisting and projecting to the normal and tangent vector fields commute, and we can project the Levi–Civita connection consistently to the twisted M, provided the twist is based on the Lie subalgebra $${\mathfrak {k}}\subset {\mathfrak {e}}$$ k ⊂ e of the Killing vector fields of the metric; a twisted Gauss theorem follows, in particular. Twisted algebraic manifolds can be characterized in terms of generators and $$\star $$ ⋆ -polynomial relations. We present in some detail twisted cylinders embedded in twisted Euclidean $${\mathbb {R}}^3$$ R 3 and twisted hyperboloids embedded in twisted Minkowski $${\mathbb {R}}^3$$ R 3 [these are twisted (anti-)de Sitter spaces $$dS_2,AdS_2$$ d S 2 , A d S 2 ].


Author(s):  
Fedor Zaitsev ◽  
Vladimir Bychkov

The book of well-known Russian scientists systematically presents a new theoretical approach to studying nature's fundamental phenomena using the hypothesis of the physical vacuum, or the ether, as some environment in which all the processes develop. In the proposed studies, the ether is represented as some one-component continuous media that satisfies generally accepted conservation laws: of matter and momentum. From the appropriate two equations, a number of consequences are obtained to which a physical interpretation is given. For the first time, 150 years after studies of Faraday and Maxwell, it is shown that these single premises mathematically give basic physical laws established experimentally: the Maxwell equations, the Lorentz force, the Gauss theorem; the laws: Coulomb, Biot - Savard, Ampere, electromagnetic induction, Ohm, Joule - Lenz, Wiedemann - Franz, universal gravitation, and etc. Details of mechanisms of many processes, that seemed previously paradoxical, have been disclosed. A method of the model substantiation adopted in the mathematical modeling methodology allows to conclude that the presented mathematical model of the ether adequately describes electromagnetic and gravitational processes. Qualitative and quantitative analysis of hundreds of known and new experimental facts allows in the methodology of physics, as science summarizing the experiments data, to confirm a conclusion about the existence of the ether (physical vacuum). The content of the book is based on the works of authors done during the last fourteen years. Many results are published for the first time. The book is intended for specialists in the field of electrodynamics, electrical engineering, gravity and kinetics, as well as for graduate students and students, interested in the fundamental principles of these scientific directions. This book is unique in terms of the comprehensive consideration of the problem and the depth of its analysis.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Péter Forgács ◽  
Árpád Lukács

AbstractIn the Abelian Higgs model electric (and magnetic) fields of external charges (and currents) are screened by the scalar field. In this contribution, complementing recent investigations of Ishihara and Ogawa, we present a detailed investigation of charge screening using a perturbative approach with the charge strength as an expansion parameter. It is shown how perfect global and remarkably good local screening can be derived from Gauss’ theorem, and the asymptotic form of the fields far from the sources. The perturbative results are shown to compare favourably to the numerical ones.


2020 ◽  
Vol 23 (4) ◽  
Author(s):  
Gaetano Fiore ◽  
Davide Franco ◽  
Thomas Weber

AbstractWe propose a general procedure to construct noncommutative deformations of an algebraic submanifold M of $\mathbb {R}^{n}$ ℝ n , specializing the procedure [G. Fiore, T. Weber, Twisted submanifolds of$\mathbb {R}^{n}$ ℝ n , arXiv:2003.03854] valid for smooth submanifolds. We use the framework of twisted differential geometry of Aschieri et al. (Class. Quantum Grav. 23, 1883–1911, 2006), whereby the commutative pointwise product is replaced by the ⋆-product determined by a Drinfel’d twist. We actually simultaneously construct noncommutative deformations of all the algebraic submanifolds Mc that are level sets of the fa(x), where fa(x) = 0 are the polynomial equations solved by the points of M, employing twists based on the Lie algebra Ξt of vector fields that are tangent to all the Mc. The twisted Cartan calculus is automatically equivariant under twisted Ξt. If we endow $\mathbb {R}^{n}$ ℝ n with a metric, then twisting and projecting to normal or tangent components commute, projecting the Levi-Civita connection to the twisted M is consistent, and in particular a twisted Gauss theorem holds, provided the twist is based on Killing vector fields. Twisted algebraic quadrics can be characterized in terms of generators and ⋆-polynomial relations. We explicitly work out deformations based on abelian or Jordanian twists of all quadrics in $\mathbb {R}^{3}$ ℝ 3 except ellipsoids, in particular twisted cylinders embedded in twisted Euclidean $\mathbb {R}^{3}$ ℝ 3 and twisted hyperboloids embedded in twisted Minkowski $\mathbb {R}^{3}$ ℝ 3 [the latter are twisted (anti-)de Sitter spaces dS2, AdS2].


2020 ◽  
Vol 8 (6) ◽  
pp. 270-275
Author(s):  
Evelina Prozorova

Using the Ostrogradsky-Gauss theorem to construct the laws of conservation and replacement of the integral over the surface by the integral over the volume, we neglect the integral term outside, i.e. neglect the circulation on the sides of the elementary volume (in the two-dimensional case, this is clearly visible). Circulation means the presence of rotation, which in turn means the presence of a moment of force (angular momentum). As a result, we have a symmetric stress tensor, a symmetric velocity tensor, etc. Static pressure, as follows from kinetic theory, there is a zero-order quantity; the terms associated with dissipative effects are first-order quantities. It does not follow from the Boltzmann equation and from the phenomenological theory that the pressure in the Euler equation is equal to one third of the sum of the pressures on the corresponding coordinate axes. The inaccuracy of determining the velocities in the stress tensor in the stress tensor does not strongly affect the results at low speeds.  All these issues are discussed in the work. As example in this paper   suggests task of flowing liquid at little distance of two parallel plates.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
V.M. Busovikov ◽  
V.Zh. Sakbaev

AbstractWe study the class of finite additive shift invariant measures on the real separable Hilbert space E. For any choice of such a measure we consider the Hilbert space ℋ of complex-valued functions which are square-integrable with respect to this measure. Some analogs of Sobolev spaces of functions on the space E are introduced. The analogue of Gauss theorem is obtained for the simplest domains such as the rectangle in the space E. The correctness of the problem for Poisson equation in the rectangle with homogeneous Dirichlet condition is obtained and the variational approach of the solving of this problem is constructed.


There are many experimental facts that currently cannot be described theoretically. A possible reason is bad mathematical models and algorithms for calculation, despite the many works in this area of research. The aim of this work is to clarificate the mathematical models of describing for rarefied gas and continuous mechanics and to study the errors that arise when we describe a rarefied gas through distribution function. Writing physical values conservation laws via delta functions, the same classical definition of physical values are obtained as in classical mechanics. Usually the derivation of conservation laws is based using the Ostrogradsky-Gauss theorem for a fixed volume without moving. The theorem is a consequence of the application of the integration in parts at the spatial case. In reality, in mechanics and physics gas and liquid move and not only along a forward path, but also rotate. Discarding the out of integral term means ignoring the velocity circulation over the surface of the selected volume. When taking into account the motion of a gas, this term is difficult to introduce into the differential equation. Therefore, to account for all components of the motion, it is proposed to use an integral formulation. Next question is the role of the discreteness of the description of the medium in the kinetic theory and the interaction of the discreteness and "continuity" of the media. The question of the relationship between the discreteness of a medium and its description with the help of continuum mechanics arises due to the fact that the distances between molecules in a rarefied gas are finite, the times between collisions are finite, but on definition under calculating derivatives on time and space we deal with infinitely small values. We investigate it


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050010
Author(s):  
JUNRU WU ◽  
CHENGYUAN WANG

In this paper, with the Hausdorff measure, the Hausdorff integral on fractal sets with one or lower dimension is firstly introduced via measure theory. Then the definition of the integral on fractal sets in [Formula: see text] is given. With the variable substitution theorem in the Riemann integral generalized to the integral on fractal sets, the integral on fractal manifolds is defined. As a result, with the generalization of Gauss’ theorem, Stokes’ theorem is generalized to the integral on fractal manifolds in [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document