The Hardy Space H1 with Non-doubling Measures and Their Applications

Author(s):  
Dachun Yang ◽  
Dongyong Yang ◽  
Guoen Hu
2006 ◽  
Vol 279 (16) ◽  
pp. 1797-1807 ◽  
Author(s):  
Guoen Hu ◽  
Shuang Liang

2009 ◽  
Vol 7 (2) ◽  
pp. 187-207 ◽  
Author(s):  
Dachun Yang ◽  
Dongyong Yang

Letµbe a nonnegative Radon measure on ℝdwhich satisfies the growth condition that there exist constantsC0> 0 andn∈ (0, d] such that for allx∈ ℝdand r > 0,μ(B(x,r))≤C0rn, whereB(x, r) is the open ball centered atxand having radiusr. In this paper, when ℝdis not an initial cube which impliesµ(ℝd) = ∞, the authors prove that the homogeneous Littlewood-Paleyg-function of Tolsa is bounded from the Hardy spaceH1(µ) toL1(µ), and furthermore, that iff∈ RBMO (µ), then [ġ(f)]2is either infinite everywhere or finite almost everywhere, and in the latter case, [ġ(f)]2belongs to RBLO (µ) with norm no more thanC‖f‖RBMO(μ)2, whereC≻0is independent off.


2011 ◽  
Vol 18 (2) ◽  
pp. 377-397
Author(s):  
Dachun Yang ◽  
Dongyong Yang

Abstract Let μ be a non-negative Radon measure on which satisfies only the polynomial growth condition. Let 𝒴 be a Banach space and H 1(μ) be the Hardy space of Tolsa. In this paper, the authors prove that a linear operator T is bounded from H 1(μ) to 𝒴 if and only if T maps all (p, γ)-atomic blocks into uniformly bounded elements of 𝒴; moreover, the authors prove that for a sublinear operator T bounded from L 1(μ) to L 1, ∞(μ), if T maps all (p, γ)-atomic blocks with p ∈ (1, ∞) and γ ∈ ℕ into uniformly bounded elements of L 1(μ), then T extends to a bounded sublinear operator from H 1(μ) to L 1(μ). For the localized atomic Hardy space h 1(μ), the corresponding results are also presented. Finally, these results are applied to Calderón–Zygmund operators, Riesz potentials and multilinear commutators generated by Calderón–Zygmund operators or fractional integral operators with Lipschitz functions to simplify the existing proofs in the related papers.


2008 ◽  
Vol 45 (3) ◽  
pp. 321-331
Author(s):  
István Blahota ◽  
Ushangi Goginava

In this paper we prove that the maximal operator of the Marcinkiewicz-Fejér means of the 2-dimensional Vilenkin-Fourier series is not bounded from the Hardy space H2/3 ( G2 ) to the space L2/3 ( G2 ).


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3237-3243
Author(s):  
In Hwang ◽  
In Kim ◽  
Sumin Kim

In this note we give a connection between the closure of the range of block Hankel operators acting on the vector-valued Hardy space H2Cn and the left coprime factorization of its symbol. Given a subset F ? H2Cn, we also consider the smallest invariant subspace S*F of the backward shift S* that contains F.


2009 ◽  
Vol 25 (8) ◽  
pp. 1297-1304 ◽  
Author(s):  
Yong Jiao ◽  
Wei Chen ◽  
Pei De Liu

Author(s):  
YOUFA LI ◽  
TAO QIAN

A sequence of special functions in Hardy space [Formula: see text] are constructed from Cauchy kernel on unit disk 𝔻. Applying projection operator of the sequence of functions leads to an analytic sampling approximation to f, any given function in [Formula: see text]. That is, f can be approximated by its analytic samples in 𝔻s. Under a mild condition, f is approximated exponentially by its analytic samples. By the analytic sampling approximation, a signal in [Formula: see text] can be approximately decomposed into components of positive instantaneous frequency. Using circular Hilbert transform, we apply the approximation scheme in [Formula: see text] to Ls(𝕋2) such that a signal in Ls(𝕋2) can be approximated by its analytic samples on ℂs. A numerical experiment is carried out to illustrate our results.


Author(s):  
Yong Jiao ◽  
Dan Zeng ◽  
Dejian Zhou

We investigate various variable martingale Hardy spaces corresponding to variable Lebesgue spaces $\mathcal {L}_{p(\cdot )}$ defined by rearrangement functions. In particular, we show that the dual of martingale variable Hardy space $\mathcal {H}_{p(\cdot )}^{s}$ with $0<p_{-}\leq p_{+}\leq 1$ can be described as a BMO-type space and establish martingale inequalities among these martingale Hardy spaces. Furthermore, we give an application of martingale inequalities in stochastic integral with Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document