variable lebesgue spaces
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 22)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 32 (3) ◽  
Author(s):  
Dorothee D. Haroske ◽  
Cornelia Schneider ◽  
Kristóf Szarvas

AbstractWe study unboundedness properties of functions belonging to Lebesgue and Lorentz spaces with variable and mixed norms using growth envelopes. Our results extend the ones for the corresponding classical spaces in a natural way. In the case of spaces with mixed norms, it turns out that the unboundedness in the worst direction, i.e., in the direction where $$p_{i}$$ p i is the smallest, is crucial. More precisely, the growth envelope is given by $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p}}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},\min \{p_{1}, \ldots , p_{d} \})$$ E G ( L p → ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , min { p 1 , … , p d } ) for mixed Lebesgue and $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p},q}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},q)$$ E G ( L p → , q ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , q ) for mixed Lorentz spaces, respectively. For the variable Lebesgue spaces, we obtain $${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot )}(\varOmega )) = (t^{-1/p_{-}},p_{-})$$ E G ( L p ( · ) ( Ω ) ) = ( t - 1 / p - , p - ) , where $$p_{-}$$ p - is the essential infimum of $$p(\cdot )$$ p ( · ) , subject to some further assumptions. Similarly, for the variable Lorentz space, it holds$${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot ),q}(\varOmega )) = (t^{-1/p_{-}},q)$$ E G ( L p ( · ) , q ( Ω ) ) = ( t - 1 / p - , q ) . The growth envelope is used for Hardy-type inequalities and limiting embeddings. In particular, as a by-product, we determine the smallest classical Lebesgue (Lorentz) space which contains a fixed mixed or variable Lebesgue (Lorentz) space, respectively.


2021 ◽  
Vol 55 (1) ◽  
pp. 21-41
Author(s):  
Jorge Moreno ◽  
Ebner Pineda ◽  
Wilfredo Urbina

The main result of this paper is the proof of the boundedness of the Maximal Function T* of the Ornstein-Uhlenbeck semigroup {Tt}t≥ 0 in Rd, on Gaussian variable Lebesgue spaces Lp(.) (γd); under a condition of regularity on p(.) following [5] and [8]. As an immediate consequence of that result, the Lp(.) (γd)-boundedness of the Ornstein-Uhlenbeck semigroup {Tt}t≥ 0 in Rd is obtained. Another consequence of that result is the Lp(.) (γd)-boundedness of the Poisson-Hermite semigroup and the Lp(.) (γd)- boundedness of the Gaussian Bessel potentials of order β > 0.


Author(s):  
Yong Jiao ◽  
Dan Zeng ◽  
Dejian Zhou

We investigate various variable martingale Hardy spaces corresponding to variable Lebesgue spaces $\mathcal {L}_{p(\cdot )}$ defined by rearrangement functions. In particular, we show that the dual of martingale variable Hardy space $\mathcal {H}_{p(\cdot )}^{s}$ with $0<p_{-}\leq p_{+}\leq 1$ can be described as a BMO-type space and establish martingale inequalities among these martingale Hardy spaces. Furthermore, we give an application of martingale inequalities in stochastic integral with Brownian motion.


2020 ◽  
Vol 27 (4) ◽  
pp. 637-647
Author(s):  
Jian Tan

AbstractWe establish off-diagonal extrapolation on mixed variable Lebesgue spaces. As its applications, we obtain the boundedness for strong fractional maximal operators. The vector-valued analogies are also considered. Additionally, the Littlewood–Paley characterization for mixed variable Lebesgue spaces is also established with the help of weighted norm inequalities and extrapolation.


Sign in / Sign up

Export Citation Format

Share Document