Improving of Non-Interactive Zero-Knowledge Arguments Using Oblivious Transfer

Author(s):  
Alexander Frolov
2012 ◽  
Vol 263-266 ◽  
pp. 3076-3078
Author(s):  
Xiao Qiang Guo ◽  
Li Hong Li ◽  
Cui Ling Luo ◽  
Yi Shuo Shi

The Bit Commitment (BC) is an important basic agreement in cryptography . The concept was first proposed by the winner of the Turing Award in 1995 ManuelBlum. Bit commitment scheme can be used to build up zero knowledge proof, verified secret sharing, throwing coins etc agreement.Simultaneously and Oblivious Transfer together constitute the basis of secure multi-party computations. Both of them are hotspots in the field of information security. We investigated unconditional secure Quantum Bit Commitment (QBC) existence. And we constructed a new bit commitment model – double prover bit commitment. The Quantum Bit Commitment Protocol can be resistant to errors caused by noise.


2010 ◽  
Vol 24 (4) ◽  
pp. 761-799 ◽  
Author(s):  
Yehuda Lindell ◽  
Hila Zarosim

2021 ◽  
Vol 29 (2) ◽  
pp. 229-271
Author(s):  
Panagiotis Grontas ◽  
Aris Pagourtzis ◽  
Alexandros Zacharakis ◽  
Bingsheng Zhang

This work formalizes Publicly Auditable Conditional Blind Signatures (PACBS), a new cryptographic primitive that allows the verifiable issuance of blind signatures, the validity of which is contingent upon a predicate and decided by a designated verifier. In particular, when a user requests the signing of a message, blinded to protect her privacy, the signer embeds data in the signature that makes it valid if and only if a condition holds. A verifier, identified by a private key, can check the signature and learn the value of the predicate. Auditability mechanisms in the form of non-interactive zero-knowledge proofs are provided, so that a cheating signer cannot issue arbitrary signatures and a cheating verifier cannot ignore the embedded condition. The security properties of this new primitive are defined using cryptographic games. A proof-of-concept construction, based on the Okamoto–Schnorr blind signatures infused with a plaintext equivalence test is presented and its security is analyzed.


Sign in / Sign up

Export Citation Format

Share Document