Density Waves in Dipolar Bose-Einstein Condensates by Means of Symbolic Computations

Author(s):  
Alexandru I. Nicolin ◽  
Ionel Rata
2015 ◽  
Vol 92 (1) ◽  
Author(s):  
Yan Li ◽  
Chunlei Qu ◽  
Yongsheng Zhang ◽  
Chuanwei Zhang

2012 ◽  
Vol 108 (14) ◽  
Author(s):  
Aleksandra Maluckov ◽  
Goran Gligorić ◽  
Ljupčo Hadžievski ◽  
Boris A. Malomed ◽  
Tilman Pfau

Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1090 ◽  
Author(s):  
Dušan Vudragović ◽  
Antun Balaž

Faraday and resonant density waves emerge in Bose-Einstein condensates as a result of harmonic driving of the system. They represent nonlinear excitations and are generated due to the interaction-induced coupling of collective oscillation modes and the existence of parametric resonances. Using a mean-field variational and a full numerical approach, we studied density waves in dipolar condensates at zero temperature, where breaking of the symmetry due to anisotropy of the dipole-dipole interaction (DDI) plays an important role. We derived variational equations of motion for the dynamics of a driven dipolar system and identify the most unstable modes that correspond to the Faraday and resonant waves. Based on this, we derived the analytical expressions for spatial periods of both types of density waves as functions of the contact and the DDI strength. We compared the obtained variational results with the results of extensive numerical simulations that solve the dipolar Gross-Pitaevskii equation in 3D, and found a very good agreement.


1967 ◽  
Vol 31 ◽  
pp. 313-317 ◽  
Author(s):  
C. C. Lin ◽  
F. H. Shu

Density waves in the nature of those proposed by B. Lindblad are described by detailed mathematical analysis of collective modes in a disk-like stellar system. The treatment is centered around a hypothesis of quasi-stationary spiral structure. We examine (a) the mechanism for the maintenance of this spiral pattern, and (b) its consequences on the observable features of the galaxy.


1984 ◽  
Vol 75 ◽  
pp. 265-277
Author(s):  
J.B. Holbelg ◽  
W.T. Forrester

ABSTRACTDuring the Voyager 1 and 2 Saturn encounters the ultraviolet spectrometers observed three separate stellar occultations by Saturn's rings. Together these three observations, which sampled the optical depth of the rings at resolutions from 3 to 6 km. can be used to establish a highly accurate distance scale allowing the identification of numerous ring features associated with resonances due to exterior satellites. Three separate observations of an eccentric ringlet near the location of the Titan apsidal resonance are discussed along with other ringlet-resonance associations occurring in the C ring. Density waves occurring in the A and B rings are reviewed and a detailed discussion of the analysis of one of these features is presented.


1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-161-Pr10-163
Author(s):  
H. Matsukawa ◽  
H. Miyake ◽  
M. Yumoto ◽  
H. Fukuyama

1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-129-Pr10-132 ◽  
Author(s):  
J. P. McCarten ◽  
T. C. Jones ◽  
X. Wu ◽  
J. H. Miller ◽  
I. Pirtle ◽  
...  

1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-239-Pr10-241
Author(s):  
B. Dóra ◽  
A. Virosztek

1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-65-Pr10-67
Author(s):  
N. Markovic ◽  
M. A.H. Dohmen ◽  
H. S.J. van der Zant

Sign in / Sign up

Export Citation Format

Share Document