optical depth
Recently Published Documents





2022 ◽  
Vol 270 ◽  
pp. 112841
Jianyu Zheng ◽  
Zhibo Zhang ◽  
Anne Garnier ◽  
Hongbin Yu ◽  
Qianqian Song ◽  

2022 ◽  
Vol 14 (2) ◽  
pp. 406
Yong Xie ◽  
Yi Su ◽  
Xingfa Gu ◽  
Tiexi Chen ◽  
Wen Shao ◽  

Accurate and updated aerosol optical properties (AOPs) are of vital importance to climatology and environment-related studies for assessing the radiative impact of natural and anthropogenic aerosols. We comprehensively studied the columnar AOP observations between January 2019 and July 2020 from a ground-based remote sensing instrument located at a rural site operated by Central China Comprehensive Experimental Sites in the center of the Yangtze River Delta (YRD) region. In order to further study the aerosol type, two threshold-based aerosol classification methods were used to investigate the potential categories of aerosol particles under different aerosol loadings. Based on AOP observation and classification results, the potential relationships between the above-mentioned results and meteorological factors (i.e., humidity) and long-range transportation processes were analyzed. According to the results, obvious variation in aerosol optical depth (AOD) during the daytime, as well as throughout the year, was revealed. Investigation into AOD, single-scattering albedo (SSA), and absorption aerosol optical depth (AAOD) revealed the dominance of fine-mode aerosols with low absorptivity. According to the results of the two aerosol classification methods, the dominant aerosol types were continental (accounting for 43.9%, method A) and non-absorbing aerosols (62.5%, method B). Longer term columnar AOP observations using remote sensing alongside other techniques in the rural areas in East China are still needed for accurate parameterization in the future.

2022 ◽  
Vol 22 (1) ◽  
pp. 535-560
Jerónimo Escribano ◽  
Enza Di Tomaso ◽  
Oriol Jorba ◽  
Martina Klose ◽  
Maria Gonçalves Ageitos ◽  

Abstract. Atmospheric mineral dust has a rich tri-dimensional spatial and temporal structure that is poorly constrained in forecasts and analyses when only column-integrated aerosol optical depth (AOD) is assimilated. At present, this is the case of most operational global aerosol assimilation products. Aerosol vertical distributions obtained from spaceborne lidars can be assimilated in aerosol models, but questions about the extent of their benefit upon analyses and forecasts along with their consistency with AOD assimilation remain unresolved. Our study thoroughly explores the added value of assimilating spaceborne vertical dust profiles, with and without the joint assimilation of dust optical depth (DOD). We also discuss the consistency in the assimilation of both sources of information and analyse the role of the smaller footprint of the spaceborne lidar profiles in the results. To that end, we have performed data assimilation experiments using dedicated dust observations for a period of 2 months over northern Africa, the Middle East, and Europe. We assimilate DOD derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) on board Suomi National Polar-Orbiting Partnership (SUOMI-NPP) Deep Blue and for the first time Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP)-based LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) pure-dust extinction coefficient profiles on an aerosol model. The evaluation is performed against independent ground-based DOD derived from AErosol RObotic NETwork (AERONET) Sun photometers and ground-based lidar dust extinction profiles from the Cyprus Clouds Aerosol and Rain Experiment (CyCARE) and PREparatory: does dust TriboElectrification affect our ClimaTe (Pre-TECT) field campaigns. Jointly assimilating LIVAS and Deep Blue data reduces the root mean square error (RMSE) in the DOD by 39 % and in the dust extinction coefficient by 65 % compared to a control simulation that excludes assimilation. We show that the assimilation of dust extinction coefficient profiles provides a strong added value to the analyses and forecasts. When only Deep Blue data are assimilated, the RMSE in the DOD is reduced further, by 42 %. However, when only LIVAS data are assimilated, the RMSE in the dust extinction coefficient decreases by 72 %, the largest improvement across experiments. We also show that the assimilation of dust extinction profiles yields better skill scores than the assimilation of DOD under an equivalent sensor footprint. Our results demonstrate the strong potential of future lidar space missions to improve desert dust forecasts, particularly if they foresee a depolarization lidar channel to allow discrimination of desert dust from other aerosol types.

2022 ◽  
Vol 14 (2) ◽  
pp. 373
Muhammad Bilal ◽  
Alaa Mhawish ◽  
Md. Arfan Ali ◽  
Janet E. Nichol ◽  
Gerrit de Leeuw ◽  

The SEMARA approach, an integration of the Simplified and Robust Surface Reflectance Estimation (SREM) and Simplified Aerosol Retrieval Algorithm (SARA) methods, was used to retrieve aerosol optical depth (AOD) at 550 nm from a Landsat 8 Operational Land Imager (OLI) at 30 m spatial resolution, a Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 m resolution, and a Visible Infrared Imaging Radiometer Suite (VIIRS) at 750 m resolution over bright urban surfaces in Beijing. The SEMARA approach coupled (1) the SREM method that is used to estimate the surface reflectance, which does not require information about water vapor, ozone, and aerosol, and (2) the SARA algorithm, which uses the surface reflectance estimated by SREM and AOD measurements obtained from the Aerosol Robotic NETwork (AERONET) site (or other high-quality AOD) as the input to estimate AOD without prior information on the aerosol optical and microphysical properties usually obtained from a look-up table constructed from long-term AERONET data. In the present study, AOD measurements were obtained from the Beijing AERONET site. The SEMARA AOD retrievals were validated against AOD measurements obtained from two other AERONET sites located at urban locations in Beijing, i.e., Beijing_RADI and Beijing_CAMS, over bright surfaces. The accuracy and uncertainties/errors in the AOD retrievals were assessed using Pearson’s correlation coefficient (r), root mean squared error (RMSE), relative mean bias (RMB), and expected error (EE = ± 0.05 ± 20%). EE is the envelope encompassing both absolute and relative errors and contains 68% (±1σ) of the good quality retrievals based on global validation. Here, the EE of the MODIS Dark Target algorithm at 3 km resolution is used to report the good quality SEMARA AOD retrievals. The validation results show that AOD from SEMARA correlates well with AERONET AOD measurements with high correlation coefficients (r) of 0.988, 0.980, and 0.981; small RMSE of 0.08, 0.09, and 0.08; and small RMB of 4.33%, 1.28%, and -0.54%. High percentages of retrievals, i.e., 85.71%, 91.53%, and 90.16%, were within the EE for Landsat 8 OLI, MODIS, and VIIRS, respectively. The results suggest that the SEMARA approach is capable of retrieving AOD over urban areas with high accuracy and small errors using high to medium spatial resolution satellite remote sensing data. This approach can be used for aerosol monitoring over bright urban surfaces such as in Beijing, which is frequently affected by severe dust storms and haze pollution, to evaluate their effects on public health.

2022 ◽  
Vol 15 (1) ◽  
pp. 219-249
Mahtab Majdzadeh ◽  
Craig A. Stroud ◽  
Christopher Sioris ◽  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  

Abstract. The photolysis module in Environment and Climate Change Canada's online chemical transport model GEM-MACH (GEM: Global Environmental Multi-scale – MACH: Modelling Air quality and Chemistry) was improved to make use of the online size and composition-resolved representation of atmospheric aerosols and relative humidity in GEM-MACH, to account for aerosol attenuation of radiation in the photolysis calculation. We coupled both the GEM-MACH aerosol module and the MESSy-JVAL (Modular Earth Submodel System) photolysis module, through the use of the online aerosol modeled data and a new Mie lookup table for the model-generated extinction efficiency, absorption and scattering cross sections of each aerosol type. The new algorithm applies a lensing correction factor to the black carbon absorption efficiency (core-shell parameterization) and calculates the scattering and absorption optical depth and asymmetry factor of black carbon, sea salt, dust and other internally mixed components. We carried out a series of simulations with the improved version of MESSy-JVAL and wildfire emission inputs from the Canadian Forest Fire Emissions Prediction System (CFFEPS) for 2 months, compared the model aerosol optical depth (AOD) output to the previous version of MESSy-JVAL, satellite data, ground-based measurements and reanalysis products, and evaluated the effects of AOD calculations and the interactive aerosol feedback on the performance of the GEM-MACH model. The comparison of the improved version of MESSy-JVAL with the previous version showed significant improvements in the model performance with the implementation of the new photolysis module and with adopting the online interactive aerosol concentrations in GEM-MACH. Incorporating these changes to the model resulted in an increase in the correlation coefficient from 0.17 to 0.37 between the GEM-MACH model AOD 1-month hourly output and AERONET (Aerosol Robotic Network) measurements across all the North American sites. Comparisons of the updated model AOD with AERONET measurements for selected Canadian urban and industrial sites, specifically, showed better correlation coefficients for urban AERONET sites and for stations located further south in the domain for both simulation periods (June and January 2018). The predicted monthly averaged AOD using the improved photolysis module followed the spatial patterns of MERRA-2 reanalysis (Modern-Era Retrospective analysis for Research and Applications – version 2), with an overall underprediction of AOD over the common domain for both seasons. Our study also suggests that the domain-wide impacts of direct and indirect effect aerosol feedbacks on the photolysis rates from meteorological changes are considerably greater (3 to 4 times) than the direct aerosol optical effect on the photolysis rate calculations.

2022 ◽  
Michael Sigl ◽  
Matthew Toohey ◽  
Joseph R. McConnell ◽  
Jihong Cole-Dai ◽  
Mirko Severi

Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is the dominant driver of natural climate variability on interannual-to-multidecadal timescales. Based on a set of continuous sulfate and sulfur records from a suite of ice cores from Greenland and Antarctica, the HolVol v.1.0 database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events for the Holocene (from 9500 BCE or 11500 year BP to 1900 CE), constituting an extension of the previous record by 7000 years. The database incorporates new-generation ice-core aerosol records with sub-annual temporal resolution and demonstrated sub-decadal dating accuracy and precision. By tightly aligning and stacking the ice-core records on the WD2014 chronology from Antarctica we resolve long-standing previous inconsistencies in the dating of ancient volcanic eruptions that arise from biased (i.e. dated too old) ice-core chronologies over the Holocene for Greenland. We reconstruct a total of 850 volcanic eruptions with injections in excess of 1 TgS, of which 329 (39 %) are located in the low latitudes with bipolar sulfate deposition, 426 (50 %) are located in the Northern Hemisphere (NH) extratropics and 88 (10 %) are located in the Southern Hemisphere (SH) extratropics. The spatial distribution of reconstructed eruption locations is in agreement with prior reconstructions for the past 2,500 years, and follows the global distribution of landmasses. In total, these eruptions injected 7410 TgS in the stratosphere, for which tropical eruptions accounted for 70 % and NH extratropics for 25 %. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the HolVol VSSI estimates, representing the first Holocene-scale reconstruction constrained by Greenland and Antarctica ice cores. These new long-term reconstructions of past VSSI and SAOD variability confirm evidence from regional volcanic eruption chronologies (e.g., from Iceland) in showing that the early Holocene (9500–7000 BCE) experienced a higher number of volcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared to the past 2,500 years. This increase coincides with the rapid retreat of ice sheets during deglaciation, providing context for potential future increases of volcanic activity in regions under projected glacier melting in the 21st century. The reconstructed VSSI and SAOD data are available at https://doi.pangaea.de/10.1594/PANGAEA.928646 (Sigl et al., 2021).

John T. Braggio ◽  
Eric S. Hall ◽  
Stephanie A. Weber ◽  
Amy K Huff

Optimal use of aerosol optical depth (AOD)-PM2.5 fused surfaces in epidemiologic studies requires homogeneous temporal and spatial fused surfaces. No analytic method is currently available to evaluate the spatial dimension. The temporal case-crossover design was modified to assess the association between Community Multiscale Air Quality (CMAQ) lag grids and four respiratory-cardiovascular hospital events. The maximum number of adjacent lag grids with the expo-sure-health outcome association determined the size of the homogeneous spatial area. The largest homogeneous spatial area included 5 grids (720 km2) and the smallest 2 grids (288 km2). PMC and PMCK analyses of ED asthma, IP asthma, IP MI, and IP HF were significantly higher in rural grids without air monitors than in urban with air monitors at lag grids 0, 1, and 01. Grids without air monitors had higher AOD-PM2.5 concentration levels, poverty percent, population density, and environmental hazards than grids with air monitors. ED asthma, IP MI, and HF PMCK ORs were significantly higher during the warm season than during the cold season at lag grids 0, 1, 01, and 04. The possibility of elevated fine PM and other demographic and environmental risk factors contributing to elevated respiratory-cardiovascular diseases in persons residing in rural areas was discussed.

Sign in / Sign up

Export Citation Format

Share Document