scholarly journals A Multidimensional Hilbert-Type Integral Inequality Related to the Riemann Zeta Function

Author(s):  
Michael Th. Rassias ◽  
Bicheng Yang
2018 ◽  
Vol 12 (2) ◽  
pp. 273-296 ◽  
Author(s):  
Michael Rassias ◽  
Bicheng Yang ◽  
Andrei Raigorodskii

Applying techniques of real analysis and weight functions, we study some equivalent conditions of two kinds of the reverse Hardy-type integral inequalities with a particular nonhomogeneous kernel. The constant factors are related to the Riemann zeta function and are proved to be best possible. In the form of applications, we deduce a few equivalent conditions of two kinds of the reverse Hardy-type integral inequalities with a particular homogeneous kernel. We also consider some corollaries as particular cases.


2019 ◽  
Vol 210 (12) ◽  
pp. 1753-1773 ◽  
Author(s):  
A. Laurinčikas ◽  
J. Petuškinaitė

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .


Sign in / Sign up

Export Citation Format

Share Document