Continuous Linear Maps

2014 ◽  
pp. 115-138
Author(s):  
Joseph Muscat
Author(s):  
Sadayuki Yamamuro

AbstractThe aim of this note is to investigate the structure of general surjectivity problem for a continuous linear map between locally convex spaces. We shall do so by using the method introduced in Yamamuro (1980). Its basic notion is that of calibrations which has been introduced in Yamamuro (1975), studied in detail in Yamamuro (1979) and appliced to several problems in Yamamuro (1978) and Yamamuro (1979a).


2002 ◽  
Vol 90 (1) ◽  
pp. 101 ◽  
Author(s):  
J. A. López Molina

We characterize the pairs of general Lorentz sequence spaces $\ell^{u,v}(\nu),$ $\ell^{p,q}(\mu), 0 < u, v, p, q < \infty$ such that all continuous linear maps from the first space into the second one are compact.


1998 ◽  
Vol 57 (2) ◽  
pp. 177-179 ◽  
Author(s):  
José Bonet

Examples of normed barrelled spacesEor quasicomplete barrelled spacesEare given such that there is a non-continuous linear map from the spaceEinto itself with closed graph.


1983 ◽  
Vol 93 (2) ◽  
pp. 307-314 ◽  
Author(s):  
D. J. Fleming ◽  
D. M. Giarrusso

If Z and E are Hausdorff locally convex spaces (LCS) then by Lb(Z, E) we mean the space of continuous linear maps from Z to E endowed with the topology of uniform convergence on the bounded subsets of Z. The dual Lb(Z, E)′ will always carry the topology of uniform convergence on the bounded subsets of Lb(Z, E). If K(Z, E) is a linear subspace of L(Z, E) then Kb(Z, E) will be used to denote K(Z, E) with the relative topology and Kb(Z, E)″ will mean the dual of Kb(Z, E)′ with the natural topology of uniform convergence on the equicontinuous subsets of Kb(Z, E)′. If Z and E are Banach spaces these provide, in each instance, the usual norm topologies.


2020 ◽  
Vol 43 (6) ◽  
pp. 4315-4334
Author(s):  
Doha Adel Abulhamil ◽  
Fatmah B. Jamjoom ◽  
Antonio M. Peralta

Abstract Let $$T:A\rightarrow X$$ T : A → X be a bounded linear operator, where A is a $$\hbox {C}^*$$ C ∗ -algebra, and X denotes an essential Banach A-bimodule. We prove that the following statements are equivalent: (a) T is anti-derivable at zero (i.e., $$ab =0$$ a b = 0 in A implies $$T(b) a + b T(a)=0$$ T ( b ) a + b T ( a ) = 0 ); (b) There exist an anti-derivation $$d:A\rightarrow X^{**}$$ d : A → X ∗ ∗ and an element $$\xi \in X^{**}$$ ξ ∈ X ∗ ∗ satisfying $$\xi a = a \xi ,$$ ξ a = a ξ , $$\xi [a,b]=0,$$ ξ [ a , b ] = 0 , $$T(a b) = b T(a) + T(b) a - b \xi a,$$ T ( a b ) = b T ( a ) + T ( b ) a - b ξ a , and $$T(a) = d(a) + \xi a,$$ T ( a ) = d ( a ) + ξ a , for all $$a,b\in A$$ a , b ∈ A . We also prove a similar equivalence when X is replaced with $$A^{**}$$ A ∗ ∗ . This provides a complete characterization of those bounded linear maps from A into X or into $$A^{**}$$ A ∗ ∗ which are anti-derivable at zero. We also present a complete characterization of those continuous linear operators which are $$^*$$ ∗ -anti-derivable at zero.


1975 ◽  
Vol 18 (3) ◽  
pp. 417-421 ◽  
Author(s):  
Chung-Lie Wang

In [4] Carroll and the author have treated the following problem(1)where Λ is a closed densely defined self-adjoint operator in a separable Hilbert space H with (Λu, u) ≥ c ‖u‖2, c > 0, Λ-1 ∊ L(H) (L(E, F) is the space of continuous linear maps from E to F; in particular, L(H) = L(H, H)), a(t) > 0 for t > 0 a(0) = 0 and S(t), R(t), B(t) ∈ L(H).


Author(s):  
R. J. H. Dawlings

Let H be a separable Hilbert space and let CL(H) be the semigroup of continuous, linear maps from H to H. Let E+ be the idempotents of CL(H). Let Ker ɑ and Im ɑ be the null-space and range, respectively, of an element ɑ of CL(H) and let St ɑ be the subspace {x∊H: xɑ = x} of H. It is shown that 〈E+〉 = I∪F∪{i}, whereand ι is the identity map. From the proof it is clear that I and F both form subsemigroups of 〈E+〉 and that the depth of I is 3. It is also shown that the depths of F and 〈E+〉 are infinite.


Sign in / Sign up

Export Citation Format

Share Document