The Jacobian Conjecture states that any complex n-dimensional locally invertible polynomial system is globally invertible with polynomial inverse. In 1982, Bass et al. proved an important reduction theorem stating that the conjecture is true for any degree of the polynomial system if it is true in degree three. This degree reduction is obtained with the price of increasing the dimension n. We show in this chapter a result concerning partial elimination of variables, which implies a reduction of the generic case to the quadratic one. The price to pay is the introduction of a supplementary parameter 0≤n′≤n, parameter which represents the dimension of a linear subspace where some particular conditions on the system must hold. We exhibit a proof, in a QFT formulation, using the intermediate field method exposed in Chapter 3.