Critical Function Spaces for the Well-Posedness of the Navier-Stokes Initial Value Problem

Author(s):  
Isabelle Gallagher
Author(s):  
Xiaochun Sun ◽  
Jia Liu ◽  
Jihong Zhang

We studies the initial value problem for the fractional Navier-Stokes-Coriolis equations, which obtained by replacing the Laplacian operator in the Navier-Stokes-Coriolis equation by the more general operator $(-\Delta)^\alpha$ with $\alpha>0$. We introduce function spaces of the Besove type characterized by the time evolution semigroup associated with the general linear Stokes-Coriolis operator. Next, we establish the unique existence of global in time mild solutions for small initial data belonging to our function spaces characterized by semigroups in both the scaling subcritical and critical settings.


2009 ◽  
Vol 06 (03) ◽  
pp. 549-575 ◽  
Author(s):  
J. COLLIANDER ◽  
S. IBRAHIM ◽  
M. MAJDOUB ◽  
N. MASMOUDI

We investigate the initial value problem for a defocusing nonlinear Schrödinger equation with exponential nonlinearity [Formula: see text] We identify subcritical, critical, and supercritical regimes in the energy space. We establish global well-posedness in the subcritical and critical regimes. Well-posedness fails to hold in the supercritical case.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 224 ◽  
Author(s):  
Stefano Vignolo

We discuss the Cauchy problem and the junction conditions within the framework of f ( R ) -gravity with torsion. We derive sufficient conditions to ensure the well-posedness of the initial value problem, as well as general conditions to join together on a given hypersurface two different solutions of the field equations. The stated results can be useful to distinguish viable from nonviable f ( R ) -models with torsion.


Sign in / Sign up

Export Citation Format

Share Document