exponential nonlinearity
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 43)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Huy Tuan Nguyen ◽  
Nguyen Anh Tuan ◽  
Chao Yang

<p style='text-indent:20px;'>This article is a comparative study on an initial-boundary value problem for a class of semilinear pseudo-parabolic equations with the fractional Caputo derivative, also called the fractional Sobolev-Galpern type equations. The purpose of this work is to reveal the influence of the degree of the source nonlinearity on the well-posedness of the solution. By considering four different types of nonlinearities, we derive the global well-posedness of mild solutions to the problem corresponding to the four cases of the nonlinear source terms. For the advection source function case, we apply a nontrivial limit technique for singular integral and some appropriate choices of weighted Banach space to prove the global existence result. For the gradient nonlinearity as a local Lipschitzian, we use the Cauchy sequence technique to show that the solution either exists globally in time or blows up at finite time. For the polynomial form nonlinearity, by assuming the smallness of the initial data we derive the global well-posed results. And for the case of exponential nonlinearity in two-dimensional space, we derive the global well-posedness by additionally using an Orlicz space.</p>


Author(s):  
sreenadh konijeti ◽  
Sarika Goyal ◽  
Reshmi Biswas

In the present paper, we study a class of quasilinear Choquard equations involving N-Laplacian and the nonlinearity with the critical exponential growth. We discuss the existence of positive solutions of such equations.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 337
Author(s):  
Tatyana V. Redkina ◽  
Robert G. Zakinyan ◽  
Arthur R. Zakinyan ◽  
Olga V. Novikova

This work aims to obtain new transformations and auto-Bäcklund transformations for generalized Liouville equations with exponential nonlinearity having a factor depending on the first derivatives. This paper discusses the construction of Bäcklund transformations for nonlinear partial second-order derivatives of the soliton type with logarithmic nonlinearity and hyperbolic linear parts. The construction of transformations is based on the method proposed by Clairin for second-order equations of the Monge–Ampere type. For the equations studied in the article, using the Bäcklund transformations, new equations are found, which make it possible to find solutions to the original nonlinear equations and reveal the internal connections between various integrable equations.


Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 492-512
Author(s):  
Zongming Guo ◽  
Xia Huang ◽  
Dong Ye ◽  
Feng Zhou

Abstract We are interested in the qualitative properties of solutions of the Hénon type equations with exponential nonlinearity. First, we classify the stable at infinity solutions of Δu + |x| α e u = 0 in R N , which gives a complete answer to the problem considered in Wang and Ye (2012 J. Funct. Anal. 262 1705–1727). Secondly, existence and precise asymptotic behaviours of entire radial solutions to Δ2 u = |x| α e u are obtained. Then we classify the stable and stable at infinity radial solutions to Δ2 u = |x| α e u in any dimension.


2021 ◽  
Vol 5 (4) ◽  
pp. 179
Author(s):  
Mohammad Izadi ◽  
Hari M. Srivastava

The ultimate goal of this study is to develop a numerically effective approximation technique to acquire numerical solutions of the integer and fractional-order Bratu and the singular Lane–Emden-type problems especially with exponential nonlinearity. Both the initial and boundary conditions were considered and the fractional derivative being considered in the Liouville–Caputo sense. In the direct approach, the generalized Bessel matrix method based on collocation points was utilized to convert the model problems into a nonlinear fundamental matrix equation. Then, the technique of quasilinearization was employed to tackle the nonlinearity that arose in our considered model problems. Consequently, the quasilinearization method was utilized to transform the original nonlinear problems into a sequence of linear equations, while the generalized Bessel collocation scheme was employed to solve the resulting linear equations iteratively. In particular, to convert the Neumann initial or boundary condition into a matrix form, a fast algorithm for computing the derivative of the basis functions is presented. The error analysis of the quasilinear approach is also discussed. The effectiveness of the present linearized approach is illustrated through several simulations with some test examples. Comparisons with existing well-known schemes revealed that the presented technique is an easy-to-implement method while being very effective and convenient for the nonlinear Bratu and Lane–Emden equations.


Author(s):  
Tadahiro Oh ◽  
Tristan Robert ◽  
Yuzhao Wang

AbstractWe study the two-dimensional stochastic nonlinear heat equation (SNLH) and stochastic damped nonlinear wave equation (SdNLW) with an exponential nonlinearity $$\lambda \beta e^{\beta u }$$ λ β e β u , forced by an additive space-time white noise. (i) We first study SNLH for general $$\lambda \in {\mathbb {R}}$$ λ ∈ R . By establishing higher moment bounds of the relevant Gaussian multiplicative chaos and exploiting the positivity of the Gaussian multiplicative chaos, we prove local well-posedness of SNLH for the range $$0< \beta ^2 < \frac{8 \pi }{3 + 2 \sqrt{2}} \simeq 1.37 \pi $$ 0 < β 2 < 8 π 3 + 2 2 ≃ 1.37 π . Our argument yields stability under the noise perturbation, thus improving Garban’s local well-posedness result (2020). (ii) In the defocusing case $$\lambda >0$$ λ > 0 , we exploit a certain sign-definite structure in the equation and the positivity of the Gaussian multiplicative chaos. This allows us to prove global well-posedness of SNLH for the range: $$0< \beta ^2 < 4\pi $$ 0 < β 2 < 4 π . (iii) As for SdNLW in the defocusing case $$\lambda > 0$$ λ > 0 , we go beyond the Da Prato-Debussche argument and introduce a decomposition of the nonlinear component, allowing us to recover a sign-definite structure for a rough part of the unknown, while the other part enjoys a stronger smoothing property. As a result, we reduce SdNLW into a system of equations (as in the paracontrolled approach for the dynamical $$\Phi ^4_3$$ Φ 3 4 -model) and prove local well-posedness of SdNLW for the range: $$0< \beta ^2 < \frac{32 - 16\sqrt{3}}{5}\pi \simeq 0.86\pi $$ 0 < β 2 < 32 - 16 3 5 π ≃ 0.86 π . This result (translated to the context of random data well-posedness for the deterministic nonlinear wave equation with an exponential nonlinearity) solves an open question posed by Sun and Tzvetkov (2020). (iv) When $$\lambda > 0$$ λ > 0 , these models formally preserve the associated Gibbs measures with the exponential nonlinearity. Under the same assumption on $$\beta $$ β as in (ii) and (iii) above, we prove almost sure global well-posedness (in particular for SdNLW) and invariance of the Gibbs measures in both the parabolic and hyperbolic settings. (v) In Appendix, we present an argument for proving local well-posedness of SNLH for general $$\lambda \in {\mathbb {R}}$$ λ ∈ R without using the positivity of the Gaussian multiplicative chaos. This proves local well-posedness of SNLH for the range $$0< \beta ^2 < \frac{4}{3} \pi \simeq 1.33 \pi $$ 0 < β 2 < 4 3 π ≃ 1.33 π , slightly smaller than that in (i), but provides Lipschitz continuity of the solution map in initial data as well as the noise.


Author(s):  
Anh Tuan Nguyen ◽  
Tomás Caraballo ◽  
Nguyen Huy Tuan

In this study, we investigate the intial value problem (IVP) for a time-fractional fourth-order equation with nonlinear source terms. More specifically, we consider the time-fractional biharmonic with exponential nonlinearity and the time-fractional Cahn–Hilliard equation. By using the Fourier transform concept, the generalized formula for the mild solution as well as the smoothing effects of resolvent operators are proved. For the IVP associated with the first one, by using the Orlicz space with the function $\Xi (z)={\textrm {e}}^{|z|^{p}}-1$ and some embeddings between it and the usual Lebesgue spaces, we prove that the solution is a global-in-time solution or it shall blow up in a finite time if the initial value is regular. In the case of singular initial data, the local-in-time/global-in-time existence and uniqueness are derived. Also, the regularity of the mild solution is investigated. For the IVP associated with the second one, some modifications to the generalized formula are made to deal with the nonlinear term. We also establish some important estimates for the derivatives of resolvent operators, they are the basis for using the Picard sequence to prove the local-in-time existence of the solution.


Author(s):  
Daniele Cassani ◽  
Cristina Tarsi

AbstractWe study the following Choquard type equation in the whole plane $$\begin{aligned} (C)\quad -\Delta u+V(x)u=(I_2*F(x,u))f(x,u),\quad x\in \mathbb {R}^2 \end{aligned}$$ ( C ) - Δ u + V ( x ) u = ( I 2 ∗ F ( x , u ) ) f ( x , u ) , x ∈ R 2 where $$I_2$$ I 2 is the Newton logarithmic kernel, V is a bounded Schrödinger potential and the nonlinearity f(x, u), whose primitive in u vanishing at zero is F(x, u), exhibits the highest possible growth which is of exponential type. The competition between the logarithmic kernel and the exponential nonlinearity demands for new tools. A proper function space setting is provided by a new weighted version of the Pohozaev–Trudinger inequality which enables us to prove the existence of variational, in particular finite energy solutions to (C).


Sign in / Sign up

Export Citation Format

Share Document