junction conditions
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 30)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Philip Beltracchi ◽  
Paolo Gondolo ◽  
Emil Mottola

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
João Luís Rosa ◽  
José P. S. Lemos
Keyword(s):  

Author(s):  
Yukihiro Fujimoto ◽  
Kohkichi Konno ◽  
Tomoaki Nagasawa

Abstract We discuss quantum dynamics in the ring systems with double Y-junctions in which two arms have same length. The node of a Y-junction can be parametrized by U(3). Considering mathematically permitted junction conditions seriously, we formulate such systems by scattering matrices. We show that the symmetric ring systems, which consist of two nodes with the same parameters under the reflection symmetry, have remarkable aspects that there exist localized states inevitably, and resonant perfect transmission occurs when the wavenumber of an incoming wave coincides with that of the localized states, for any parameters of the nodes except for the extremal cases in which the absolute values of components of scattering matrices take 1. We also investigate the magnetic disturbance to the symmetric ring systems.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Sunil D. Maharaj ◽  
Byron P. Brassel

AbstractWe derive the junction conditions for a general spherically symmetric radiating star with an electromagnetic field across a comoving surface. The interior consists of a charged composite field containing barotropic matter, a null dust and a null string fluid. The exterior atmosphere is described by the generalised Vaidya spacetime. We generate the boundary condition at the stellar surface showing that the pressure is determined by the interior heat flux, anisotropy, null density, charge distribution and the exterior null string density. A new physical feature that arises in our analysis is that the surface pressure depends on the internal charge distribution for generalised Vaidya spacetimes. It is only in the special case of charged Vaidya spacetimes that the matching interior charge distribution is equal to the exterior charge at the surface as measured by an external observer. Previous treatments, for neutral matter and charged matter, arise as special cases in our treatment of composite matter.


2021 ◽  
Vol 38 (19) ◽  
pp. 195006 ◽  
Author(s):  
Sunil D Maharaj ◽  
Byron P Brassel

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Oscar J. C. Dias ◽  
Ramon Masachs ◽  
Paul Rodgers

Abstract We consider the static charged black hole bomb system, originally designed for a (uncharged) rotating superradiant system by Press and Teukolsky. A charged scalar field confined in a Minkowski cavity with a Maxwell gauge field has a quantized spectrum of normal modes that can fit inside the box. Back-reacting non-linearly these normal modes, we find the hairy solitons, a.k.a boson stars (depending on the chosen U(1) gauge), of the theory. The scalar condensate is totally confined inside the box and, outside it, we have the Reissner-Nordström solution. The Israel junction conditions at the box surface layer determine the stress tensor that the box must have to confine the scalar hair. Some of these horizonless hairy solutions exist for any value of the scalar field charge and not only above the natural critical charges of the theory (namely, the critical charges for the onset of the near-horizon and superradiant instabilities of the Reissner-Nordström black hole). However, the ground state solutions have a non-trivial intricate phase diagram with a main and a secondary family of solitons (some with a Chandrasekhar mass limit but others without) and there are a third and a fourth critical scalar field charges where the soliton spectra changes radically. Most of these intricate properties are not captured by a higher order perturbative analysis of the problem where we simply back-react a normal mode of the system.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Sunil D. Maharaj ◽  
Byron P. Brassel

AbstractIn this paper we study the junction conditions for a generalised matter distribution in a radiating star. The internal matter distribution is a composite distribution consisting of barotropic matter, null dust and a null string fluid in a shear-free spherical spacetime. The external matter distribution is a combination of a radiation field and a null string fluid. We find the boundary condition for the composite matter distribution at the stellar surface which reduces to the familiar Santos result with barotropic matter. Our result is extended to higher dimensions. We also find the boundary condition for the general spherical geometry in the presence of shear and anisotropy for a generalised matter distribution.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Ivan Kolář ◽  
Francisco José Maldonado Torralba ◽  
Anupam Mazumdar

2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Kali Charan ◽  
Om Prakash Yadav ◽  
B. C. Tewari

AbstractIn this article, we study the shear-free gravitational collapse of a charged radiating star. The Einstein field equations of gravitational collapse for the charged stars are known to give rise to a high degree of non-linearity in the ordinary differential equation coming from junction conditions. The attempts to solve it analytically proved to be unfortunate. Numerical methods have been suggested in the past. However, the high degree of non-linearity tends to introduce fluctuations and large round off errors in the numerical calculation. A new ansatz is proposed in the present work to reduce the degree of non-linearity. An ordinary differential equation is derived by satisfying junction conditions, and its numerical solution is demonstrated. Physical quantities associated with the collapse process are plotted to observe the effect of charge on these quantities. It is concluded that the charge can delay the collapse of a star and can even prevent it depending upon the amount of charge. It is also verified that the solution satisfies all the energy conditions.


Sign in / Sign up

Export Citation Format

Share Document