A Two-Stage Strategy for Real-Time Dense 3D Reconstruction of Large-Scale Scenes

Author(s):  
Diego Thomas ◽  
Akihiro Sugimoto
Author(s):  
Stuart Golodetz ◽  
Tommaso Cavallari ◽  
Nicholas A. Lord ◽  
Victor A. Prisacariu ◽  
David W. Murray ◽  
...  

2013 ◽  
Vol 14 (Suppl 1) ◽  
pp. P407 ◽  
Author(s):  
Xerxes D Arsiwalla ◽  
Alberto Betella ◽  
Enrique Martinez ◽  
Pedro Omedas ◽  
Riccardo Zucca ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ziang Lei

3D reconstruction techniques for animated images and animation techniques for faces are important research in computer graphics-related fields. Traditional 3D reconstruction techniques for animated images mainly rely on expensive 3D scanning equipment and a lot of time-consuming postprocessing manually and require the scanned animated subject to remain in a fixed pose for a considerable period. In recent years, the development of large-scale computing power of computer-related hardware, especially distributed computing, has made it possible to come up with a real-time and efficient solution. In this paper, we propose a 3D reconstruction method for multivisual animated images based on Poisson’s equation theory. The calibration theory is used to calibrate the multivisual animated images, obtain the internal and external parameters of the camera calibration module, extract the feature points from the animated images of each viewpoint by using the corner point detection operator, then match and correct the extracted feature points by using the least square median method, and complete the 3D reconstruction of the multivisual animated images. The experimental results show that the proposed method can obtain the 3D reconstruction results of multivisual animation images quickly and accurately and has certain real-time and reliability.


2019 ◽  
Vol 25 (5) ◽  
pp. 2102-2112 ◽  
Author(s):  
Patrick Stotko ◽  
Stefan Krumpen ◽  
Matthias B. Hullin ◽  
Michael Weinmann ◽  
Reinhard Klein

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Panlong Gu ◽  
Fengyu Zhou ◽  
Dianguo Yu ◽  
Fang Wan ◽  
Wei Wang ◽  
...  

RGBD camera-based VSLAM (Visual Simultaneous Localization and Mapping) algorithm is usually applied to assist robots with real-time mapping. However, due to the limited measuring principle, accuracy, and distance of the equipped camera, this algorithm has typical disadvantages in the large and dynamic scenes with complex lightings, such as poor mapping accuracy, easy loss of robot position, and much cost on computing resources. Regarding these issues, this paper proposes a new method of 3D interior construction, which combines laser radar and an RGBD camera. Meanwhile, it is developed based on the Cartographer laser SLAM algorithm. The proposed method mainly takes two steps. The first step is to do the 3D reconstruction using the Cartographer algorithm and RGBD camera. It firstly applies the Cartographer algorithm to calculate the pose of the RGBD camera and to generate a submap. Then, a real-time 3D point cloud generated by using the RGBD camera is inserted into the submap, and the real-time interior construction is finished. The second step is to improve Cartographer loop-closure quality by the visual loop-closure for the sake of correcting the generated map. Compared with traditional methods in large-scale indoor scenes, the proposed algorithm in this paper shows higher precision, faster speed, and stronger robustness in such contexts, especially with complex light and dynamic objects, respectively.


2016 ◽  
Vol 9 (1) ◽  
pp. 1-20 ◽  
Author(s):  
M. Zollhöfer ◽  
C. Siegl ◽  
M. Vetter ◽  
B. Dreyer ◽  
M. Stamminger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document