Sequence Covering Arrays and Linear Extensions

Author(s):  
Patrick C. Murray ◽  
Charles J. Colbourn
Author(s):  
Raghu N. Kacker ◽  
D. Richard Kuhn ◽  
Yu Lei ◽  
Dimitris E. Simos

Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 143
Author(s):  
Jose Beltrán Jiménez ◽  
Tomi S. Koivisto

In this paper, we provide a general framework for the construction of the Einstein frame within non-linear extensions of the teleparallel equivalents of General Relativity. These include the metric teleparallel and the symmetric teleparallel, but also the general teleparallel theories. We write the actions in a form where we separate the Einstein–Hilbert term, the conformal mode due to the non-linear nature of the theories (which is analogous to the extra degree of freedom in f(R) theories), and the sector that manifestly shows the dynamics arising from the breaking of local symmetries. This frame is then used to study the theories around the Minkowski background, and we show how all the non-linear extensions share the same quadratic action around Minkowski. As a matter of fact, we find that the gauge symmetries that are lost by going to the non-linear generalisations of the teleparallel General Relativity equivalents arise as accidental symmetries in the linear theory around Minkowski. Remarkably, we also find that the conformal mode can be absorbed into a Weyl rescaling of the metric at this order and, consequently, it disappears from the linear spectrum so only the usual massless spin 2 perturbation propagates. These findings unify in a common framework the known fact that no additional modes propagate on Minkowski backgrounds, and we can trace it back to the existence of accidental gauge symmetries of such a background.


1970 ◽  
Vol 8 (4) ◽  
pp. 722-728
Author(s):  
S. B. Katok

2004 ◽  
Vol 7 (4) ◽  
pp. 454-460
Author(s):  
H. M. Kulyk ◽  
V. L. Kulyk

Order ◽  
2014 ◽  
Vol 32 (2) ◽  
pp. 147-155 ◽  
Author(s):  
Stefan Felsner ◽  
Thibault Manneville
Keyword(s):  

2018 ◽  
Vol 10 (01) ◽  
pp. 1850011 ◽  
Author(s):  
Idelfonso Izquierdo-Marquez ◽  
Jose Torres-Jimenez

A covering array [Formula: see text] is an [Formula: see text] array such that every [Formula: see text] subarray covers at least once each [Formula: see text]-tuple from [Formula: see text] symbols. For given [Formula: see text], [Formula: see text], and [Formula: see text], the minimum number of rows for which exists a CA is denoted by [Formula: see text] (CAN stands for Covering Array Number) and the corresponding CA is optimal. Optimal covering arrays have been determined algebraically for a small subset of cases; but another alternative to find CANs is the use of computational search. The present work introduces a new orderly algorithm to construct non-isomorphic covering arrays; this algorithm is an improvement of a previously reported algorithm for the same purpose. The construction of non-isomorphic covering arrays is used to prove the nonexistence of certain covering arrays whose nonexistence implies the optimality of other covering arrays. From the computational results obtained, the following CANs were established: [Formula: see text] for [Formula: see text], [Formula: see text], and [Formula: see text]. In addition, the new result [Formula: see text], and the already known existence of [Formula: see text], imply [Formula: see text].


2007 ◽  
Author(s):  
Kai Graf ◽  
Marcus Pelz ◽  
Volker Bertram ◽  
H. Söding

A method for the prediction of seakeeping behaviour of sailing yachts has been developed. It is based on linear strip theory with some non-linear extensions. The method is capable to take into account heeling and yawing yacht hulls, yacht appendages and sails. The yacht's response amplitude operators (RAO) and added resistance in waves can be predicted for harmonic waves as well as for natural wave spectra. The method is used to study added resistance in seaways for ACC-V5 yachts of varying beam. Results are used for further VPP investigations. The AVPP velocity prediction program is used to study optimum length to beam ratio of the yachts depending on wind velocity and upwind to downwind weighting. This investigation is carried out for flat water conditions as well as for two typical wave spectra. The results show that taking into account added resistance in seaways has a strong impact on predicted performance of the yacht.


Author(s):  
Michael Forbes ◽  
Jim Lawrence ◽  
Yu Lei ◽  
Raghu N. Kacker ◽  
D. Richard Kuhn
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document