covering arrays
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 30)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Mohammad Galety

In recent years, artificial intelligence (AI) has piqued the curiosity of researchers. Convolutional Neural Networks (CNN) is a deep learning (DL) approach commonly utilized to solve problems. In standard machine learning tasks, biologically inspired computational models surpass prior types of artificial intelligence by a considerable margin. The Convolutional Neural Network (CNN) is one of the most stunning types of ANN architecture. The goal of this research is to provide information and expertise on many areas of CNN. Understanding the concepts, benefits, and limitations of CNN is critical for maximizing its potential to improve image categorization performance.  This article has integrated the usage of a mathematical object called covering arrays to construct the set of ideal parameters for neural network design due to the complexity of the tuning process for the correct selection of the parameters used for this form of neural network.


2021 ◽  
Author(s):  
Tamar Krikorian

In this thesis, we consider combinatorial objects called ordered orthogonal arrays, which are related to orthogonal arrays and Latin squares. We also introduce a new combinatorial method to the construction of these objects, as well as developing new ones. We discuss the applications of ordered orthogonal arrays and ordered covering arrays, which generalize covering arrays. We adapt existing combinatorial methods to the construction of these objects, as well as developing new ones. We discuss the applications of ordered orthogonal arrays and ordered covering arrays to quasi-Monte Carlo integration through the construction of point sets called (t,m,s)-nets and a new object we call (t,m,s)-covering nets.


2021 ◽  
Author(s):  
Tamar Krikorian

In this thesis, we consider combinatorial objects called ordered orthogonal arrays, which are related to orthogonal arrays and Latin squares. We also introduce a new combinatorial method to the construction of these objects, as well as developing new ones. We discuss the applications of ordered orthogonal arrays and ordered covering arrays, which generalize covering arrays. We adapt existing combinatorial methods to the construction of these objects, as well as developing new ones. We discuss the applications of ordered orthogonal arrays and ordered covering arrays to quasi-Monte Carlo integration through the construction of point sets called (t,m,s)-nets and a new object we call (t,m,s)-covering nets.


Author(s):  
Raghu N. Kacker ◽  
D. Richard Kuhn ◽  
Yu Lei ◽  
Dimitris E. Simos

Author(s):  
Raghu N. Kacker ◽  
D. Richard Kuhn ◽  
Yu Lei ◽  
Dimitris E. Simos

Author(s):  
Soumen Maity ◽  
Charles J. Colbourn

Covering arrays are combinatorial objects that have been successfully applied in design of test suites for testing systems such as software, hardware, and networks where failures can be caused by the interaction between their parameters. Let [Formula: see text] and [Formula: see text] be positive integers with [Formula: see text]. Two vectors [Formula: see text] and [Formula: see text] are qualitatively independent if for any ordered pair [Formula: see text], there exists an index [Formula: see text] such that [Formula: see text]. Let [Formula: see text] be a graph with [Formula: see text] vertices [Formula: see text] with respective vertex weights [Formula: see text]. A mixed covering array on[Formula: see text] , denoted by [Formula: see text], is a [Formula: see text] array such that row [Formula: see text] corresponds to vertex [Formula: see text], entries in row [Formula: see text] are from [Formula: see text]; and if [Formula: see text] is an edge in [Formula: see text], then the rows [Formula: see text] are qualitatively independent. The parameter [Formula: see text] is the size of the array. Given a weighted graph [Formula: see text], a mixed covering array on [Formula: see text] with minimum size is optimal. In this paper, we introduce some basic graph operations to provide constructions for optimal mixed covering arrays on the family of graphs with treewidth at most three.


Sign in / Sign up

Export Citation Format

Share Document