response amplitude operators
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 20)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Vol 9 (9) ◽  
pp. 988 ◽  
Author(s):  
Sebastien Gueydon ◽  
Frances M. Judge ◽  
Michael O’Shea ◽  
Eoin Lyden ◽  
Marc Le Boulluec ◽  
...  

This paper documents the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. For the tests in wind, only the thrust of the turbine was considered and it was fixed to pre-selected levels. Hence, this work focuses on the hydrodynamic responses of a semi-submersible floating foundation. It was found that the global surge stiffness was comparable across facilities, except in one case where different azimuth angles were used for the mooring lines. Heave and pitch had the same stiffness coefficient and periods for all basins. Response Amplitude Operators (RAOs) were used to compare the responses in waves from all facilities. The shape of the motion RAOs were globally similar for all basins except around some particular frequencies. As the results were non-linear around the resonance and cancellation frequencies, the differences between facilities were magnified at these frequencies. Surge motions were significantly impacted by reflections leading to large differences in these RAOs between all basins.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1110
Author(s):  
Wei-Qin Liu ◽  
Luo-Nan Xiong ◽  
Guo-Wei Zhang ◽  
Meng Yang ◽  
Wei-Guo Wu ◽  
...  

The numerical hydroelastic method is used to study the structural response of a hexagon enclosed platform (HEP) of flexible module rigid connector (FMRC) structure that can provide life accommodation, ship berthing and marine supply for ships sailing in the deep ocean. Six trapezoidal floating structures constitute the HEP structure so that it is a symmetrical very large floating structure (VLFS). The HEP has the characteristics of large area and small depth, so its hydroelastic response is significant. Therefore, this paper studies the structural responses of a hexagon enclosed platform of FMRC structure in waves by means of a 3D potential-flow hydroelastic method based on modal superposition. Numerical models, including the hydrodynamic model, wet surface model and finite element method (FEM) model, are established, a rigid connection is simulated by many-point-contraction (MPC) and the number of wave cases is determined. The load and structural response of HEP are obtained and analyzed in all wave cases, and frequency-domain hydroelastic calculation and time-domain hydroelastic calculation are carried out. After obtaining a number of response amplitude operators (RAOs) for stress and time-domain stress histories, the mechanism of the HEP structure is compared and analyzed. This study is used to guide engineering design for enclosed-type ocean platforms.


2021 ◽  
Vol 11 (11) ◽  
pp. 5249
Author(s):  
Payam Aboutalebi ◽  
Fares M’zoughi ◽  
Itziar Martija ◽  
Izaskun Garrido ◽  
Aitor J. Garrido

In this article, a new strategy for switching control has been proposed with the aim of reducing oscillations in floating offshore wind turbines. Such oscillations lead to a shortage in the system’s efficiency, lifespan and harvesting capability of wind and wave energies. In order to study the decreasing of undesired oscillations in the system, particularly in pitch and top tower fore-aft movements, a square-shaped platform barge equipped with four symmetric oscillating water columns has been considered. The oscillating water columns’ air flux valves allow to operate the air columns so that to control the barge movements caused by oscillatory motion of the waves. In order to design the control scheme, response amplitude operators have been used to evaluate the performance of the system for a range of wave frequency profiles. These response amplitude operators analysis makes it possible to implement a switching control strategy to adequately regulate the valves opening/closing transition. The obtained results show that the proposed controlled oscillating water column-based barge present a better performance compared to the traditional barge one. In the case study with the period of 10 s, the results indicate the significant oscillation reduction for the controlled oscillating water column-based system compared to the standard barge system by 30.8% in pitch angle and 25% in fore-aft displacement.


2021 ◽  
Vol 28 (1) ◽  
pp. 16-27
Author(s):  
Sebastian Bielicki

Abstract The most common methods for predicting ship roll motions in a specified sea state are direct measurements of motions in a representative irregular wave realisation (time domain) or calculations of motions from response amplitude operators (RAOs) in the frequency domain. The result of the first method is valid only for the tested sea state, whilst the second method is more flexible but less accurate. RAO-based predictions are calculated assuming a linear model of ship motions in waves. RAO functions are usually evaluated by means of tests in regular waves for a limited number of frequencies and a constant wave amplitude. This approach is time-consuming and the discrete form of the RAO functions obtained for a limited number of frequencies may lead to discrepancies in the prediction of seakeeping and often does not allow the actual amplitude of the response in resonant frequency to be determined. Another challenge is the appropriate selection of wave amplitude for tests due to the considerable influence of viscous damping on roll response in irregular sea waves. There are alternative methods for the experimental determination of RAO functions and one of them is presented in this study. The presented approach allows RAO functions to be evaluated in one run by the generation of irregular waves characterised by a white or coloured noise spectrum. This method reduces the experiment duration, with almost continuous RAO characteristics obtained. The flat (white noise) and linear (coloured noise) wave spectral energy characteristics are considered in the experiment and the obtained predictions are compared with the results of accurate measurements in irregular waves.


Author(s):  
Yu Wang ◽  
Hamn-Ching Chen ◽  
Guilherme Vaz ◽  
Simon Mewes

Abstract Utilization of Computational Fluid Dynamics (CFD) codes to perform hydrodynamic analysis of Floating Offshore Wind Turbines (FOWTs) is increasing recently. However, verification studies of the simulations that quantifying numerical uncertainties and permitting a detailed validation in a next phase is often disregarded. In this work, a verification study of CFD simulations of a semi-submersible FOWT design under regular waves is performed. To accomplish this goal, Response Amplitude Operators (RAOs) are derived from the computational results of the heave, surge and pitch motions. Four grids with different grid sizes with a constant refinement ratio are generated for verification of spatial convergence. Three different time increments are paired with each grid for verification of temporal convergence. The verification study is performed by estimation of the numerical errors and uncertainties using procedures proposed by Eca and Hoekstra [1].


2021 ◽  
Vol 9 (1) ◽  
pp. 83 ◽  
Author(s):  
Jens Ley ◽  
Ould el Moctar

Ship hull structural damages are often caused by extreme wave-induced loads. Reliable load predictions are required to minimize the risk of structural failures. One conceivable approach relies on direct computations of extreme events with appropriate numerical methods. In this perspective, we present a systematic study comparing results obtained with different computational methods for wave-induced loads and motions of different ship types in regular and random irregular long-crested extremes waves. Significant wave heights between 10.5 and 12.5 m were analyzed. The numerical methods differ in complexity and are based on strip theory, boundary element methods (BEM) and unsteady Reynolds-Averaged Navier–Stokes (URANS) equations. In advance to the comparative study, the codes applied have been enhanced by different researchers to account for relevant nonlinearities related to wave excitations and corresponding ship responses in extreme waves. The sea states investigated were identified based on the Coefficient of Contribution (CoC) method. Computed time histories, response amplitude operators and short-term statistics of ship responses and wave elevation were systematically compared against experimental data. While the results of the numerical methods, based on potential theory, in small and moderate waves agreed favorably with the experiments, they deviated considerably from the measurements in higher waves. The URANS-based predictions compared fairly well to experimental measurements with the drawback of significantly higher computation times.


2020 ◽  
Vol S-I (2) ◽  
pp. 224-229
Author(s):  
S. Ryabushkin ◽  

This paper identifies trim & draft parameters (spatial trimming) of a real fast boat with low-capacity motor, mostly running as a displacement vessel. The paper discusses various loading cases and calculates integral parameters in still water and regular waves (of various frequencies and incidence angles) for the ship at standstill and running at different speeds, also giving response-amplitude operators (RAOs) of motions and wave-induced moments. The study also gives calculation results for threedimensional fields of hydrostatic and hydrodynamic pressures and acceleration for further analysis of stress-strain state taking into account that finite-element model has no supports. High compliance (both global and local) of non-metal hull implies that the procedure suggested in this paper could be experimentally validated in future.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6407
Author(s):  
Niccolo Bruschi ◽  
Giulio Ferri ◽  
Enzo Marino ◽  
Claudio Borri

The spar buoy platform for offshore wind turbines is the most utilized type and the OC3 Hywind system design is largely used in research. This system is usually moored with three catenary cables with 120° between each other. Adding clump weights to the mooring lines has an influence on the platform response and on the mooring line tension. However, the optimal choice for their position and weight is still an open issue, especially considering the multitude of sea states the platform can be exposed to. In this study, therefore, an analysis on the influence of two such variables on the platform response and on the mooring line tension is presented. FAST by the National Renewable Energy Laboratory (NREL) is used to perform time domain simulations and Response Amplitude Operators are adopted as the main indicators of the clump weights effects. Results show that the clump weight mass is not as influential as the position, which turns out to be optimal, especially for the Surge degree of freedom, when closest to the platform.


2020 ◽  
Vol 8 (12) ◽  
pp. 978
Author(s):  
Yiwen Wang ◽  
Weiguo Wu ◽  
C. Guedes Soares

The hydroelastic behaviour of a river-sea-going ship hull is analysed experimentally and numerically. A segmented ship model connected by a steel backbone is tested in regular waves, and its high-frequency vibrations such as springing and whipping responses are identified. The hydroelastic response of the ship is numerically calculated using a hydroelastic time domain method based on strip theory, which is extended to include an improved model of the slamming load. The slamming forces in the bow section are determined using the Modified Longvinovich Model (MLM) instead of the Von Karman model. The vertical motions and wave-induced loads are calculated and compared with the experimental results. The response amplitude operators of the vertical loads and the high-order harmonics are analysed under different speeds, showing good agreement with the experiments. The slamming loads on the bow section of a river-to-sea ship are predicted utilizing the MLM model and compared with the Arbitrary Lagrangian Eulerian algorithm by LS-DYNA and with the measured results.


2020 ◽  
Vol 15 (6) ◽  
pp. 100-110
Author(s):  
AHMAD FITRIADHY ◽  
◽  
AMIRA ADAM

A floating jetty often experiences several vertical motions i.e., heave and pitch motion responses due to harsh environmental condition. This inherently makes discomfort to everyone during berthing on a floating; and even it potentially leads to loss of life due to falling down into the sea. A preliminary analysis using Computational Fluid Dynamics (CFD) simulation is necessary to be conducted to ensure user’s safety. The CFD analysis focused on the interaction between wave motions and the floating jetty and its effects on the vertical motions. The vertical motions of floating jetty were quantified by the Response Amplitude Operators (RAO). Several effects due to variation of wavelength (λ/L) have been studied. The CFD results revealed that the lower wavelength (λ/L<2.25) resulted in the increase of the heave and pitch motion amplitudes proportionally. However, the subsequent increase of wavelength (2.25>λ/L) has given results to less heave and pitch motion amplitudes. In general, it is shown that the vertical motion characteristics of the floating jetty predominantly depend on wave properties.


Sign in / Sign up

Export Citation Format

Share Document