Fractional and Singular Integrals in Grand Morrey Spaces

Author(s):  
Vakhtang Kokilashvili ◽  
Alexander Meskhi ◽  
Humberto Rafeiro ◽  
Stefan Samko
2021 ◽  
Vol 11 (1) ◽  
pp. 72-95
Author(s):  
Xiao Zhang ◽  
Feng Liu ◽  
Huiyun Zhang

Abstract This paper is devoted to investigating the boundedness, continuity and compactness for variation operators of singular integrals and their commutators on Morrey spaces and Besov spaces. More precisely, we establish the boundedness for the variation operators of singular integrals with rough kernels Ω ∈ Lq (S n−1) (q > 1) and their commutators on Morrey spaces as well as the compactness for the above commutators on Lebesgue spaces and Morrey spaces. In addition, we present a criterion on the boundedness and continuity for a class of variation operators of singular integrals and their commutators on Besov spaces. As applications, we obtain the boundedness and continuity for the variation operators of Hilbert transform, Hermit Riesz transform, Riesz transforms and rough singular integrals as well as their commutators on Besov spaces.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Wei Wang ◽  
Jingshi Xu

We give sufficient conditions for subsets to be precompact sets in variable Morrey spaces. Then we obtain the boundedness of the commutator generated by a singular integral operator and a BMO function on the variable Morrey spaces. Finally, we discuss the compactness of the commutator generated by a singular integral operator and a BMO function on the variable Morrey spaces.


2012 ◽  
Vol 64 (2) ◽  
pp. 257-281 ◽  
Author(s):  
Yanping Chen ◽  
Yong Ding ◽  
Xinxia Wang

AbstractIn this paper we characterize the compactness of the commutator [b, T] for the singular integral operator on the Morrey spaces . More precisely, we prove that if , the -closure of , then [b, T] is a compact operator on the Morrey spaces for ∞ < p < ∞ and 0 < ⋋ < n. Conversely, if and [b, T] is a compact operator on the for some p (1 < p < ∞), then . Moreover, the boundedness of a rough singular integral operator T and its commutator [b, T] on are also given. We obtain a sufficient condition for a subset in Morrey space to be a strongly pre-compact set, which has interest in its own right.


1998 ◽  
Vol 5 (5) ◽  
pp. 425-440
Author(s):  
Dashan Fan ◽  
Shanzhen Lu ◽  
Dachun Yang

Abstract In this paper, by means of the theories of singular integrals and linear commutators, the authors establish the regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui X. Mo ◽  
Zhe Han ◽  
Liu Yang ◽  
Xiao J. Wang

2015 ◽  
Vol 22 (2) ◽  
pp. 462-490 ◽  
Author(s):  
Marcel Rosenthal ◽  
Hans-Jürgen Schmeisser

Sign in / Sign up

Export Citation Format

Share Document