singular integral operator
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 6 (12) ◽  
pp. 13533-13551
Author(s):  
Shuhui Yang ◽  
◽  
Yan Lin

<abstract><p>In this paper, the authors study the boundedness properties of a class of multilinear strongly singular integral operator with generalized kernels on product of weighted Lebesgue spaces and product of variable exponent Lebesgue spaces, respectively. Moreover, the types $ L^{\infty}\times \dots \times L^{\infty}\rightarrow BMO $ and $ BMO\times \dots \times BMO\rightarrow BMO $ endpoint estimates are also obtained.</p></abstract>


2020 ◽  
Vol 12 (2) ◽  
pp. 443-450
Author(s):  
A. Maatoug ◽  
S.E. Allaoui

The Hilbert transform along curves is of a great importance in harmonic analysis. It is known that its boundedness on $L^p(\mathbb{R}^n)$ has been extensively studied by various authors in different contexts and the authors gave positive results for some or all $p,1<p<\infty$. Littlewood-Paley theory provides alternate methods for studying singular integrals. The Hilbert transform along curves, the classical example of a singular integral operator, led to the extensive modern theory of Calderón-Zygmund operators, mostly studied on the Lebesgue $L^p$ spaces. In this paper, we will use the Littlewood-Paley theory to prove that the boundedness of the Hilbert transform along curve $\Gamma$ on Besov spaces $ B^{s}_{p,q}(\mathbb{R}^n)$ can be obtained by its $L^p$-boundedness, where $ s\in \mathbb{R}, p,q \in ]1,+\infty[ $, and $\Gamma(t)$ is an appropriate curve in $\mathbb{R}^n$, also, it is known that the Besov spaces $ B^{s}_{p,q}(\mathbb{R}^n)$ are embedded into $L^p(\mathbb{R}^n)$ spaces for $s >0$ (i.e. $B^{s}_{p,q}(\mathbb{R}^n) \hookrightarrow L^p(\mathbb{R}^n), s>0)$. Thus, our result may be viewed as an extension of known results to the Besov spaces $ B^{s}_{p,q}(\mathbb{R}^n)$ for general values of $s$ in $\mathbb{R}$.


Author(s):  
Eric T Sawyer ◽  
Chun-Yen Shen ◽  
Ignacio Uriarte-Tuero

Abstract We show that the energy conditions are not necessary for boundedness of Riesz transforms in dimension $n\geq 2$. In dimension $n=1$, we construct an elliptic singular integral operator $H_{\flat } $ for which the energy conditions are not necessary for boundedness of $H_{\flat }$. The convolution kernel $K_{\flat }\left ( x\right ) $ of the operator $H_{\flat }$ is a smooth flattened version of the Hilbert transform kernel $K\left ( x\right ) =\frac{1}{x}$ that satisfies ellipticity $ \vert K_{\flat }\left ( x\right ) \vert \gtrsim \frac{1}{\left \vert x\right \vert }$, but not gradient ellipticity $ \vert K_{\flat }^{\prime }\left ( x\right ) \vert \gtrsim \frac{1}{ \vert x \vert ^{2}}$. Indeed the kernel has flat spots where $K_{\flat }^{\prime }\left ( x\right ) =0$ on a family of intervals, but $K_{\flat }^{\prime }\left ( x\right ) $ is otherwise negative on $\mathbb{R}\setminus \left \{ 0\right \} $. On the other hand, if a one-dimensional kernel $K\left ( x,y\right ) $ is both elliptic and gradient elliptic, then the energy conditions are necessary, and so by our theorem in [30], the $T1$ theorem holds for such kernels on the line. This paper includes results from arXiv:16079.06071v3 and arXiv:1801.03706v2.


Author(s):  
Qiaozhen Zhao

In this paper, we establish sharp maximal function inequalities for the Toeplitz-type operator associated with the singular integral operator with a variable Calderón-Zygmund kernel. As an application, we obtain the boundedness of the operator on Lebesgue, Morrey and Triebel-Lizorkin spaces.


Sign in / Sign up

Export Citation Format

Share Document