Deep Learning of Neuromuscular Control for Biomechanical Human Animation

Author(s):  
Masaki Nakada ◽  
Demetri Terzopoulos
2021 ◽  
Author(s):  
Lucas Mourot ◽  
Ludovic Hoyet ◽  
François Le Clerc ◽  
François Schnitzler ◽  
Pierre Hellier

2018 ◽  
Vol 37 (4) ◽  
pp. 1-15 ◽  
Author(s):  
Masaki Nakada ◽  
Tao Zhou ◽  
Honglin Chen ◽  
Tomer Weiss ◽  
Demetri Terzopoulos

2019 ◽  
Vol 4 (4) ◽  
pp. 648-655
Author(s):  
William G. Pearson ◽  
Jacline V. Griffeth ◽  
Alexis M. Ennis

Purpose Rehabilitation of pharyngeal swallowing dysfunction requires a thorough understanding of the functional anatomy underlying the performance goals of pharyngeal swallowing. These goals include the safe and efficient transfer of a bolus through the hypopharynx into the esophagus. Penetration or aspiration of a bolus threatens swallowing safety. Bolus residue indicates swallowing inefficiency. Several primary mechanics, or elements of the swallowing mechanism, underlie these performance goals, with some elements contributing to both goals. These primary mechanics include velopharyngeal port closure, hyoid movement, laryngeal elevation, pharyngeal shortening, tongue base retraction, and pharyngeal constriction. Each element of the swallowing mechanism is under neuromuscular control and is therefore, in principle, a potential target for rehabilitation. Secondary mechanics of pharyngeal swallowing, those movements dependent on primary mechanics, include opening the upper esophageal sphincter and epiglottic inversion. Conclusion Understanding the functional anatomy of pharyngeal swallowing underlying swallowing performance goals will facilitate anatomically informed critical thinking in the rehabilitation of pharyngeal swallowing dysfunction.


Author(s):  
Stellan Ohlsson
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


2020 ◽  
Author(s):  
L Pennig ◽  
L Lourenco Caldeira ◽  
C Hoyer ◽  
L Görtz ◽  
R Shahzad ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
A Heinrich ◽  
M Engler ◽  
D Dachoua ◽  
U Teichgräber ◽  
F Güttler
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document