Constraint Programming for Strictly Convex Integer Quadratically-Constrained Problems

Author(s):  
Wen-Yang Ku ◽  
J. Christopher Beck
2015 ◽  
Vol 158 (1-2) ◽  
pp. 235-266 ◽  
Author(s):  
Alain Billionnet ◽  
Sourour Elloumi ◽  
Amélie Lambert

Author(s):  
Christodoulos A. Floudas ◽  
Pãnos M. Pardalos ◽  
Claire S. Adjiman ◽  
William R. Esposito ◽  
Zeynep H. Gümüş ◽  
...  

Author(s):  
Immanuel Bomze ◽  
Markus Gabl

Abstract In this paper we explore convex reformulation strategies for non-convex quadratically constrained optimization problems (QCQPs). First we investigate such reformulations using Pataki’s rank theorem iteratively. We show that the result can be used in conjunction with conic optimization duality in order to obtain a geometric condition for the S-procedure to be exact. Based upon known results on the S-procedure, this approach allows for some insight into the geometry of the joint numerical range of the quadratic forms. Then we investigate a reformulation strategy introduced in recent literature for bilinear optimization problems which is based on adjustable robust optimization theory. We show that, via a similar strategy, one can leverage exact reformulation results of QCQPs in order to derive lower bounds for more complicated quadratic optimization problems. Finally, we investigate the use of reformulation strategies in order to derive characterizations of set-copositive matrix cones. Empirical evidence based upon first numerical experiments shows encouraging results.


2018 ◽  
Vol 51 (20) ◽  
pp. 400-405 ◽  
Author(s):  
Nikolaos A. Diangelakis ◽  
Iosif S. Pappas ◽  
Efstratios N. Pistikopoulos

2010 ◽  
Vol 130 (2) ◽  
pp. 332-342 ◽  
Author(s):  
Shuichiro Sakikawa ◽  
Tatsuhiro Sato ◽  
Toyohisa Morita ◽  
Kenji Ohta

Sign in / Sign up

Export Citation Format

Share Document