scholarly journals Nucleus Gracilis

Author(s):  
John E. Mendoza
Keyword(s):  
Author(s):  
J.E. Johnson

Although neuroaxonal dystrophy (NAD) has been examined by light and electron microscopy for years, the nature of the components in the dystrophic axons is not well understood. The present report examines nucleus gracilis and cuneatus (the dorsal column nuclei) in the brain stem of aging mice.Mice (C57BL/6J) were sacrificed by aldehyde perfusion at ages ranging from 3 months to 23 months. Several brain areas and parts of other organs were processed for electron microscopy.At 3 months of age, very little evidence of NAD can be discerned by light microscopy. At the EM level, a few axons are found to contain dystrophic material. By 23 months of age, the entire nucleus gracilis is filled with dystrophic axons. Much less NAD is seen in nucleus cuneatus by comparison. The most recurrent pattern of NAD is an enlarged profile, in the center of which is a mass of reticulated material (reticulated portion; or RP).


1988 ◽  
Vol 59 (3) ◽  
pp. 886-907 ◽  
Author(s):  
D. G. Ferrington ◽  
J. W. Downie ◽  
W. D. Willis

1. Recordings were made from 67 neurons in the nucleus gracilis (NG) of anesthetized macaque monkeys. All of the cells were activated antidromically from the ventral posterior lateral (VPL) nucleus of the contralateral thalamus. Stimuli used to activate the cells orthodromically were graded innocuous and noxious mechanical stimuli, including sinusoidal vibration and thermal pulses. 2. The latencies of antidromic action potentials following stimulation in the VPL nucleus were significantly shorter for cells in the caudal compared with the rostral NG. The mean minimum afferent conduction velocity of the afferent conduction velocity of the afferent fibers exciting the NG cells was 52 m/s, as judged from the latencies of the cells to orthodromic volleys evoked by electrical stimulation of peripheral nerves. The overall conduction velocity of the pathway from peripheral nerve to thalamus was approximately 40 m/s. 3. Cutaneous receptive fields on the distal hindlimb usually occupied an area equivalent to much less than a single digit. However, a few cells had receptive fields up to or exceeding the area of the foot. 4. NG cells were classified by their responses to graded mechanical stimulation of the skin as low threshold (LT) or wide dynamic range (WDR). No high-threshold NG cells were found. A special subcategory of pressure-sensitive LT (SA) neurons was recognized. Many of these cells were maximally responsive to maintained indentation of the skin. The sample of NG cells differed from the population of primate spinothalamic and spinocervicothalamic pathways so far examined, in having a larger proportion of LT neurons and a smaller proportion of WDR cells. A few NG cells responded best to manipulation of subcutaneous tissue. 5. Discriminant analysis permitted the NG cells to be assigned to classes determined by a k-means cluster analysis of the responses of a reference set of 318 primate spinothalamic tract (STT) cells. There were four classes of cells based on normalized responses of individual neurons and another four classes based upon responses compared across the population of cells. The NG cells were allocated to the various categories in different proportions than either primate STT cells or spinocervicothalamic neurons, consistent with the view that the functional roles of these somatosensory pathways differ. 6. Some of the pressure-sensitive NG cells were excited when the skin was stretched, suggesting an input from type II slowly adapting (Ruffini) mechanoreceptors.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 76 (4) ◽  
pp. 2675-2690 ◽  
Author(s):  
E. D. Al-Chaer ◽  
N. B. Lawand ◽  
K. N. Westlund ◽  
W. D. Willis

1. The purpose of this study was to investigate a proposed role for the postsynaptic dorsal column (PSDC) pathway in mediating visceral nociceptive input into the dorsal column (DC) nuclei. 2. In one group of animals, the hypogastric nerves were sectioned, thereby restricting colorectal input into the cord to pelvic afferent pathways known to coverage on lower lumbar and sacral segments. Extracellular recording were made from 41 nucleus gracilis (NG) cells that responded to colorectal distension (CRD). Results reported are from 15 NG cells that were tested before and after the administration of morphine into the sacral cord by microdialysis. 3. The responses of 11 NG cells to CRD were dramatically reduced by morphine infused into the sacral cord through a microdialysis fiber. This reduction was reversed by an intravenous injection of naloxone. Microdialysis administration of 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) or a lesion of the DC also abolished the responses of the NG cells to CRD. 4. Four NG cells that responded to CRD showed an increase in their background activity approximately 25 min after an injection of mustard oil (MO). This increase in activity was counteracted by morphine or by a lesion of the DC. 5. In a second group of animals, recordings were made from 28 PSDC cells in the L0-S1 segments of the cord. These units were antidromically activated by stimulation of the upper cervical fasciculus gracilis. The projections of five PSDC neurons into the NG were traced with the use of antidromic mapping. Results are reported for the responses of 12 PSDC cells to CRD and to cutaneous stimuli before and after morphine administration into the sacral cord by microdialysis. 6. Morphine given spinally reduced the responses of 12 PSDC cells to CRD. This reduction was reversed by an intravenous injection of naloxone. CNQX administered spinally also abolished the responses to CRD of the PSDC cells tested. 7. Four other PSDC cells were studied before and after an injection of MO into the colon. Their background activity started to increase within 25 min after the injection. Morphine suppressed this increase in background activity and this effect of morphine was reversed by naloxone. 8. The responses of NG cells to cutaneous stimuli were not significantly affected by morphine in the dose used. On the other hand, morphine significantly reduced the responses of PSDC cells to noxious cutaneous stimuli although this effect was not as dramatic as that on responses to visceral stimuli. 9. From the results of the studies described in this and the companion paper, we conclude that there is an important pelvic visceral nociceptive pathway involving PSDC neurons that synapse in the NG. The NG in turn activates neurons in the ventral posterolateral (VPL) nucleus of the thalamus. We presume that activation of VPL neurons by noxious visceral stimulation contributes to visceral pain sensation and thus that pelvic visceral pain depends largely on activity in the DC-medial lemniscus system.


1973 ◽  
Vol 177 (3) ◽  
pp. 325-342 ◽  
Author(s):  
Robert L. Gulley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document