Primate nucleus gracilis neurons: responses to innocuous and noxious stimuli

1988 ◽  
Vol 59 (3) ◽  
pp. 886-907 ◽  
Author(s):  
D. G. Ferrington ◽  
J. W. Downie ◽  
W. D. Willis

1. Recordings were made from 67 neurons in the nucleus gracilis (NG) of anesthetized macaque monkeys. All of the cells were activated antidromically from the ventral posterior lateral (VPL) nucleus of the contralateral thalamus. Stimuli used to activate the cells orthodromically were graded innocuous and noxious mechanical stimuli, including sinusoidal vibration and thermal pulses. 2. The latencies of antidromic action potentials following stimulation in the VPL nucleus were significantly shorter for cells in the caudal compared with the rostral NG. The mean minimum afferent conduction velocity of the afferent conduction velocity of the afferent fibers exciting the NG cells was 52 m/s, as judged from the latencies of the cells to orthodromic volleys evoked by electrical stimulation of peripheral nerves. The overall conduction velocity of the pathway from peripheral nerve to thalamus was approximately 40 m/s. 3. Cutaneous receptive fields on the distal hindlimb usually occupied an area equivalent to much less than a single digit. However, a few cells had receptive fields up to or exceeding the area of the foot. 4. NG cells were classified by their responses to graded mechanical stimulation of the skin as low threshold (LT) or wide dynamic range (WDR). No high-threshold NG cells were found. A special subcategory of pressure-sensitive LT (SA) neurons was recognized. Many of these cells were maximally responsive to maintained indentation of the skin. The sample of NG cells differed from the population of primate spinothalamic and spinocervicothalamic pathways so far examined, in having a larger proportion of LT neurons and a smaller proportion of WDR cells. A few NG cells responded best to manipulation of subcutaneous tissue. 5. Discriminant analysis permitted the NG cells to be assigned to classes determined by a k-means cluster analysis of the responses of a reference set of 318 primate spinothalamic tract (STT) cells. There were four classes of cells based on normalized responses of individual neurons and another four classes based upon responses compared across the population of cells. The NG cells were allocated to the various categories in different proportions than either primate STT cells or spinocervicothalamic neurons, consistent with the view that the functional roles of these somatosensory pathways differ. 6. Some of the pressure-sensitive NG cells were excited when the skin was stretched, suggesting an input from type II slowly adapting (Ruffini) mechanoreceptors.(ABSTRACT TRUNCATED AT 400 WORDS)

1988 ◽  
Vol 59 (3) ◽  
pp. 861-885 ◽  
Author(s):  
J. W. Downie ◽  
D. G. Ferrington ◽  
L. S. Sorkin ◽  
W. D. Willis

1. The response properties of neurons of the spinocervicothalamic pathway were studied in anesthetized macaque monkeys. Graded innocuous and noxious mechanical stimuli, including sinusoidal vibration and thermal pulses, were applied to the cutaneous receptive fields. 2. Forty-nine cells in the lateral cervical nucleus (LCN) were identified by antidromic activation from the ventral posterior lateral (VPL) nucleus of the contralateral thalamus. Twelve spinocervical tract (SCT) cells in the lumbosacral enlargement of the spinal cord were identified by antidromic activation from stimulation of the ipsilateral dorsolateral funiculus below C3 but not above C1. 3. Latencies for antidromic activation of LCN neurons averaged 2.3 ms, corresponding to a mean conduction velocity of approximately 17 m/s. Mean latency for orthodromic activation of LCN neurons following electrical stimulation of peripheral nerves was 12.6 ms. Overall mean conduction velocity for the monkey spinocervicothalamic pathway was estimated to be 29 m/s. 4. Most LCN cells had receptive fields on hairy skin, but some had input from glabrous skin and a few had subcutaneous fields. The receptive fields of most SCT cells had a glabrous skin component. Receptive fields tended to be smaller for SCT than LCN cells even for fields on a comparable part of the distal hindlimb. 5. Based on their responses to a series of mechanical stimuli (brushing, pressure, pinch, and squeeze), LCN and SCT cells were classified as low-threshold (LT), wide dynamic range (WDR), or high-threshold (HT) neurons. Most of the cells were in the LT or WDR classes. Thus the spinocervicothalamic pathway in the monkey differs from the spinothalamic tract (STT), in that STT cells are generally of the WDR or HT classes. 6. With the use of discriminant analysis, LCN and SCT neurons were allocated to categories determined from a k-means cluster analysis of the responses of 318 STT cells. The LCN and SCT neurons were in different proportions in the various categories than were STT cells, suggesting differences in the signaling properties of the spinocervicothalamic and spinothalamic paths. 7. Innocuous steady indentation of the skin failed to excite any of the neurons tested. Thus no positive evidence was obtained for an input to LCN neurons from slowly adapting mechanoreceptors. 8. Sinusoidal vibratory stimuli were used to test the ability of LCN and SCT neurons to follow repeated innocuous mechanical stimuli. Vibration at 10 Hz and an amplitude of 100 micron resulted in repetitive discharges in most LCN neurons and half the SCT neurons tested; many LCN neurons had thresholds below 25 micron.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 61 (6) ◽  
pp. 1121-1130 ◽  
Author(s):  
W. S. Ammons

1. Spinothalamic tract (STT) neurons in the T10-L3 segments were studied for responses to renal and somatic stimuli. A total of 90 neurons was studied in 25 alpha-chloralose anesthetized monkeys (Macaca fascicularis). All neurons were antidromically activated from the ventral posterior lateral nucleus of the thalamus. 2. Sixty-two cells were excited by renal nerve stimulation and six inhibited. Probability of locating cells with renal input was greatest in T11-L1. Cells were located in laminae I and IV-VII; however, most were located in laminae V-VII. Antidromic latencies averaged 4.61 +/- 0.32 (SE) ms, whereas antidromic conduction velocities averaged 43.23 +/- 9.03 m/s. 3. Cells with excitatory renal input received A delta input only (36 cells) or A delta- and C-fiber inputs (26 cells). Stimulation of A delta renal afferent fibers evoked bursts of 1-10 spikes/stimulus [mean 3.6 +/- 0.9 spikes/stimulus] with onset latencies of 10.7 +/- 0.5 ms. Stimulation of C-fibers evoked 1.3 +/- 0.5 spikes/stimulus with onset latencies of 61.7 +/- 11.1 ms. Magnitude of responses to A delta-fiber stimulation was greatest in T12 and decreased both rostrally and caudally. Inhibitory responses to renal nerve stimulation required activation of renal C-fibers. 4. All cells that responded to stimulation of renal afferent fibers received convergent inputs from somatic structures. Forty-four cells were classified as wide dynamic range, 10 were high threshold, 12 were high-threshold cells with inhibitory input from hair, 2 were deep, and 2 were low threshold. Somatic receptive fields were large and located on the flank and abdomen and/or the upper hindlimb. Fourteen cells had inhibitory receptive fields located on the contralateral hindlimb or one of the forearms. 5. It is concluded that T11-L1 STT cells in the monkey respond reliably to renal nerve stimulation. Thoracolumbar STT cells may thus play a role in pain that results from renal disease. The locations of the somatic receptive fields of the cells suggest that they are responsible for the referral of renal pain to the flank and abdomen.


1987 ◽  
Vol 58 (3) ◽  
pp. 480-495 ◽  
Author(s):  
W. S. Ammons

Spinoreticular (SRT) and spinothalamic (STT) neurons were studied for responses to renal and somatic stimuli in 34 cats that were anesthetized with alpha-chloralose. SRT cells were antidromically activated from the medial medullary reticular formation near the gigantocellular tegmental field contralateral (35 cells), ipsilateral (15 cells), or both contralateral and ipsilateral (11 cells) to the recording site. Collision tests showed that activation from two electrodes resulted from stimulation of separate axonal branches and not from current spread. Twenty STT cells were activated from the spinothalamic tract just medial to the medial geniculate nucleus. SRT cells were located in laminae I, V, VII, and VIII of the T12-L2 segments. Most cells were located in lamina VII. STT cells were found in laminae I, V, and VII. The axons of 12 SRT cells were located in the ventrolateral or ventral quadrants of the upper cervical spinal cord. Antidromic conduction velocities of SRT cells averaged 48.7 +/- 3.7 m/s. No differences in conduction velocity were found between cells projecting to different reticular sites. In addition conduction velocity did not vary with the type of somatic or renal input. Antidromic conduction velocities of STT cells averaged 46.4 +/- 4.7 m/s. Renal nerve stimulation excited 58 and inhibited 3 SRT cells. All 20 STT cells were excited. Thirty SRT cells were excited only by A-delta input, 26 received both A-delta- and C-fiber inputs, and 2 cells received only C-fiber input. Ten STT cells received A-delta input only and 10 received both A-delta- and C-fiber inputs. All cells with renal input also received somatic input. Thirty-six SRT cells (59%) were classified as high threshold, 12 (20%) as wide dynamic range, and 10 (16%) as deep. Ten STT cells were classified as high threshold and 10 as wide dynamic range. Somatic receptive fields of STT cells were usually simple and invariably included the left flank region, although many of the fields extended to the left hindlimb or abdomen. Eighteen of the 20 were restricted to the ipsilateral side. In contrast, somatic receptive fields of SRT cells were primarily bilateral (71%). While all but two receptive fields included the left flank area, most extended to one or both hindlimbs, the abdomen, or the right flank. Inhibitory receptive fields were found for 33% of the SRT cells and 20% of the STT cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 79 (2) ◽  
pp. 964-982 ◽  
Author(s):  
Rami Burstein ◽  
Hiroyoshi Yamamura ◽  
Amy Malick ◽  
Andrew M. Strassman

Burstein, Rami, Hiroyoshi Yamamura, Amy Malick, and Andrew M. Strassman. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J. Neurophysiol. 79: 964–982, 1998. Chemical activation and sensitization of trigeminal primary afferent neurons innervating the intracranial meninges have been postulated as possible causes of certain headaches. This sensitization, however, cannot explain the extracranial hypersensitivity that often accompanies headache. The goal of this study was to test the hypothesis that chemical activation and sensitization of meningeal sensory neurons can lead to activation and sensitization of central trigeminal neurons that receive convergent input from the dura and skin. This hypothesis was investigated by recording changes in the responsiveness of 23 [16 wide-dynamic range (WDR), 5 high threshold (HT), and 2 low threshold (LT)] dura-sensitive neurons in nucleus caudalis to mechanical stimulation of their dural receptive fields and to mechanical and thermal stimulation of their cutaneous receptive fields after local application of inflammatory mediators or acidic agents to the dura. Responses to brief chemical stimulation were recorded in 70% of the neurons; most were short, lasting the duration of the stimulus only. Twenty minutes after chemical stimulation of the dura, the following changes occurred: 1) 95% of the neurons showed significant increases in sensitivity to mechanical indentation of the dura: their thresholds to dural indentation changed from 1.57 to 0.49 g (means, P < 0.0001), and the response magnitude to identical stimuli increased by two- to fourfold; 2) 80% of the neurons showed significant increases in cutaneous mechanosensitivity: their responses to brush and pressure increased 2.5- ( P < 0.05) and 1.6-fold ( P < 0.05), respectively; 3) 75% of the neurons showed a significant increase in cutaneous thermosensitivity: their thresholds to slow heating of the skin changed from 43.7 ± 0.7 to 40.3 ± 0.7°C ( P < 0.005) and to slow cooling from 23.7 ± 3.3 to 29.2 ± 1.8°C ( P < 0.05); 4) dural receptive fields expanded within 30 min and cutaneous receptive fields within 2–4 h; and 5) ongoing activity developed in WDR and HT but not in LT neurons. Application of lidocaine to the dura abolished the response to dural stimulation but had minimal effect on the increased responses to cutaneous stimulation (suggesting involvement of a central mechanism in maintaining the sensitized state). Antidromic activation (current of <30 μA) of dura-sensitive neurons revealed projections to the hypothalamus, thalamus, and midbrain. These findings suggest that chemical activation and sensitization of dura-sensitive peripheral nociceptors could lead to enhanced responses in central neurons and that this central sensitization therefore could result in extracranial tenderness (mechanical and thermal allodynia) in the absence of extracranial pathology. The projection targets of these neurons suggest a possible role in mediating the autonomic, endocrine, and affective symptoms that accompany headaches.


1983 ◽  
Vol 49 (2) ◽  
pp. 424-441 ◽  
Author(s):  
R. P. Yezierski ◽  
K. D. Gerhart ◽  
B. J. Schrock ◽  
W. D. Willis

1. Stimulation of the sensorimotor cortex was found to excite and/or inhibit nociceptive spinothalamic tract cells. Thirteen wide dynamic range cells were inhibited by cortical stimulation, 6 were excited and 14 were both excited and inhibited. Four of six high-threshold cells were excited and one was inhibited. 2. Intermediate (200 ms) or long (2 s) duration conditioning trains were effective in reducing responses of spinothalamic cells evoked by noxious mechanical or thermal stimuli and by A- and C-fiber volleys in the sural nerve. Preferential inhibition of low-threshold responses with little or no effect on high-threshold discharges was observed in some cases. 3. Inhibitory actions were obtained primarily from stimulation of the SI sensory cortex and area 5, while excitation or excitation followed by inhibition was the dominant effect from motor cortex (area 4). Spinothalamic cells were also excited by stimulation of the medullary pyramid. 4. In eight animals extensive mapping of the sensorimotor cortex showed that for a given cell, stimulation of the sensory cortex produced inhibition while stimulation of motor cortex resulted in excitation. 5. The average latency of inhibition from sensory cortex was 29.8 +/- 10 ms, while the average latency of excitation from motor cortex was significantly shorter, 13.5 +/- 9 ms. The shortest latencies for excitation from pyramidal stimulation in the cases evaluated ranged from 2 to 9 ms. 6. Spinal cord lesions were made in five animals to determine the descending pathway(s) mediating corticofugal effects. Cortical and pyramidal effects were eliminated or considerably reduced by lesions involving the dorsal part of the lateral funiculus. This observation combined with latency data suggest that the corticospinal tract may be involved in the mediation of cortical excitation, while both pyramidal and extrapyramidal pathways are likely to be involved in cortical inhibition.


1991 ◽  
Vol 66 (3) ◽  
pp. 1033-1047 ◽  
Author(s):  
C. T. Yen ◽  
C. N. Honda ◽  
E. G. Jones

1. Extracellular and intracellular methods were used to record from fibers and neurons in the ventral lateral (VL) and adjacent nuclei of the cat thalamus. The receptive fields of the recorded units were analyzed and the units tested for inputs from the medial lemniscus (ML) and spinothalamic tract (STT) by electrical stimulation of the dorsal columns (DC) and ventrolateral funiculus (VLF) at the C2-3 spinal level. 2. Thirty-eight STT fibers were isolated in the thalamus. Their conduction velocities ranged from 15 to 75 m/s (mode 36 m/s). Adequate stimuli were found for 23 of these fibers. Seventeen were low-threshold (LT), 3 were wide-dynamic-range (WDR), and 3 were high-threshold (HT) units. 3. Five STT fibers were intra-axonally injected. Three were sufficiently well filled for analysis of their terminal fields. An intermediate-velocity STT fiber (conduction velocity 38 m/s) had a 4.3-microns axon and a single large terminal field in the central lateral nucleus (CL). The other two STT fibers were smaller, with diameters of 2.5 and 2.3 microns, conduction velocities of 15 and 19 m/s, and terminal fields made up of a few small boutons at the borders of the ventral posterior lateral nucleus (VPL). 4. Of 319 neurons isolated, 14 out of 129 (10.8%) in VL, 14 out of 76 (18.4%) in the VPL or ventral posterior medial (VPM) nucleus, 27 out of 64 (42.2%) in the CL nucleus, and 5 out of 50 (10%) in the reticular nucleus (R) responded at latencies less than 50 ms to VLF stimuli. A train of three pulses was more effective in driving VLF-responding neurons in all these nuclei than a single pulse. VLF-responding cells were widely dispersed in VL, concentrated in a focus in CL, and distributed around the borders of VPL. Most of those in VL and a small number in CL could be antidromically activated by stimulation of motor cortex. 5. Latencies of presynaptic responses (STT fibers) to VLF stimulation were short and varied from 0.8 to 3.9 ms (mode 1.6 ms). Despite this, very few fast-responding neurons were found. These were six VPL neurons (2.5 to 4 ms), one VL neuron (3 ms), and four CL neurons (3-4 ms). The initial spike latencies of the majority of thalamic neurons responding to VLF stimulation appeared in two peaks, one between 6 and 8 ms and the other at 10-15 ms.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 71 (3) ◽  
pp. 981-1002 ◽  
Author(s):  
R. J. Dado ◽  
J. T. Katter ◽  
G. J. Giesler

1. The goal of this study was to gather data that would increase our understanding of nociceptive processing by spinothalamic tract (STT) neurons that receive inputs from the hand and arm. Fifty neurons in the cervical enlargement of urethan-anesthetized rats were antidromically activated from the contralateral posterior thalamus. A stimulating electrode was moved systematically within an anterior-posterior plane in the thalamus until a point was located where the smallest amount of current antidromically activated the neuron. The antidromic thresholds at each of these lowest threshold points was < or = 30 microA; the mean antidromic threshold was 15.4 +/- 1.0 (SE) microA. Lowest threshold points were found primarily in the posterior thalamic group (Po), zona incerta, and in or near the supraoptic decussation. 2. The recording sites of 47 neurons were marked and recovered. Recording sites were located in the superficial dorsal horn (SDH, n = 15), deep dorsal horn (DDH, n = 31), and ventral horn (n = 1). Recording sites were located across the mediolateral extent of the SDH. Within the DDH, recording sites were concentrated laterally in nucleus proprius and dorsally in the lateral reticulated area. The locations of the recording points confirm previous anatomic descriptions of STT neurons in the cervical enlargement. 3. Cutaneous excitatory receptive fields were restricted to the ipsilateral forepaw or forelimb in 67% (10/15) of the neurons recorded in the SDH and 42% (13/31) of the neurons recorded in the DDH. Neurons having larger, more complex receptive fields were also commonly encountered. Thirty-three percent (5/15) of the neurons recorded in the SDH and 58% (18/31) recorded in the DDH had receptive fields that were often discontinuous and included areas of the ipsilateral shoulder, thorax, and head, including the face. 4. Innocuous and noxious mechanical stimuli were applied to the receptive field of each neuron. Fifty percent (25/50) responded to innocuous mechanical stimuli but responded at higher frequencies to noxious stimuli (wide dynamic range, WDR). Forty-four percent (22/50) responded only to noxious stimuli (high threshold, HT). Six percent (3/50) responded preferentially to innocuous stimuli (low threshold, LT). WDR and HT neurons were recorded in both the SDH and DDH, including nucleus proprius, an area not typically associated with nociceptive transmission at other levels of the cord. Sixty percent (9/15) of the units recorded in the SDH were classified as WDR neurons; the other 40% (6/15) were classified HT. Forty-eight percent (15/31) of the units recorded in the DDH were classified as WDR neurons and 42% (13/31) as HT.(ABSTRACT TRUNCATED AT 400 WORDS)


1985 ◽  
Vol 54 (1) ◽  
pp. 73-89 ◽  
Author(s):  
W. S. Ammons ◽  
M. N. Girardot ◽  
R. D. Foreman

Spinothalamic tract neurons projecting to medial thalamus (M-STT cells), ventral posterior lateral nucleus (VPL) of the thalamus (L-STT cells), or both thalamic regions (LM-STT cells) were studied in 19 monkeys anesthetized with alpha-chloralose. Twenty-seven M-STT cells were antidromically activated from nucleus centralis lateralis, nucleus centrum medianum, or the medial dorsal nucleus. Stimulation of VPL elicited antidromic responses from 22 cells and 13 cells were activated from both VPL and medial thalamus. Antidromic conduction velocities of M-STT cells were significantly slower than those of L-STT or LM-STT cells. M-STT cells were located in laminae I, IV, V, and VII with greater numbers found in the deepest laminae. L-STT cells were located mostly in lamina IV, whereas most LM-STT cells were found in lamina V. Twenty-four of 27 M-STT cells, all L-STT cells, and all LM-STT cells received input from both cardiopulmonary sympathetic and somatic afferent fibers. WDR cells were most common among the L-STT and LM-STT groups, whereas HT cells were the most common class in the M-STT cell group. Excitatory receptive fields of M-STT cells were large, and often bilateral. Receptive fields of L-STT cells were simple and never bilateral. Receptive fields of LM-STT cells could be similar to M-STT or L-STT cells. Thirty-three percent of the M-STT cells, 37% of the L-STT cells, and 62% of the LM-STT cells had inhibitory receptive fields. Inhibition was elicited most often by a noxious pinch of the hindlimbs. Sixteen of 23 (70%) M-STT cells received C-fiber cardiopulmonary sympathetic input in addition to A-delta-fiber input. The other 7 cells received only A-delta-fiber input. Only 45% of the L-STT cells and 38% of the LM-STT cells received both A-delta- and C-fiber inputs. The maximum number of spikes elicited by A-delta-input was related to segmental locations for L-STT cells with greatest responses in T2 and lesser responses in more caudal segments; however, no such trend was apparent for M-STT cells or for responses to C-fiber input for either group. Electrical stimulation of the left thoracic vagus nerve inhibited 7 of 18 M-STT cells, 10 of 16 L-STT cells, and 6 of 12 LM-STT cells. These results are the first description of visceral input to cells projecting to medial thalamus.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 55 (4) ◽  
pp. 635-643 ◽  
Author(s):  
P. Grigg ◽  
H. G. Schaible ◽  
R. F. Schmidt

Recordings were performed from sciatic nerve or dorsal root filaments in 28 cats to study single group III (conduction velocity 2.5-20 m/s) and group IV (conduction velocity less than 2.5 m/s) units supplying the knee joint via the posterior articular nerve (PAN). In seven of these cats the knee joint had been inflamed artificially. Recordings from sciatic nerve filaments revealed responses to local mechanical stimulation of the joint in only 3 of 41 group IV units and in 12 of 18 group III units from the normal joint. In the inflamed joint 14 of 36 group IV units and 24 of 36 group III units were excited with local mechanical stimulation. In recordings from dorsal root filaments (normal joint) 4 of 11 group IV units and 7 of 13 group III units were activated by stimulating the joint locally. In the normal joint four group IV units (recorded from dorsal root filaments) responded only to rotations against the resistance of the tissue, whereas the majority of the fibers did not respond even to forceful movements. Group III units with local mechanosensitivity in the normal joint reacted strongly or weakly to movements in the working range of the joint or only to movements against resistance of the tissue. In the inflamed joint, group IV fibers (recorded in sciatic nerve filaments) with detectable receptive fields responded strongly to gentle movements or only to movements against resistance of tissue. Some did not react to movements. Group III units reacted strongly or weakly to gentle movements or only to movements against resistance of the tissue.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 247 (6) ◽  
pp. R995-R1002 ◽  
Author(s):  
W. S. Ammons ◽  
R. W. Blair ◽  
R. D. Foreman

Extracellular unit recordings were obtained from 44 spinothalamic tract (STT) neurons in the T1-T5 segments of 15 alpha-chloralose anesthesized monkeys (Macaca fascicularis). Each cell had a somatic receptive field in the left chest region and was excited by electrical stimulation of cardiopulmonary sympathetic afferent fibers. Gallbladder distension to pressures between 20 and 100 mmHg increased activity in 16 of 44 neurons. Responses usually consisted of bursts of activity associated with increased gallbladder pressure (phasic responses) followed by maintained activity during the distension (tonic responses). Magnitude of phasic responses was linearly related to the distending pressure and was consistently greater than magnitude of tonic responses. The gallbladder-responsive and nonresponsive groups included similar proportions of wide dynamic range, high threshold, and high-threshold inhibitory cells. Nine of 10 gallbladder-responsive cells and 11 of 21 gallbladder-nonresponsive cells increased their discharge rate after injection of 2 micrograms/kg bradykinin into left atrium. Activity of cells with gallbladder input increased from 14 +/- 4 to 33 +/- 4 spikes/s. Cells without gallbladder input increased their discharge rate to a significantly less degree (10 +/- 3-23 +/- 4 spikes/s). These results indicate that upper thoracic STT neurons may increase their activity during gallbladder distension. Convergence of afferent information from the chest and gallbladder may explain chest pain occurring during gallbladder disease. Furthermore the tendency of gallbladder-responsive cells to respond to bradykinin injections with a high rate of discharge could explain how this chest pain of gallbladder origin may closely mimic pain of angina pectoris.


Sign in / Sign up

Export Citation Format

Share Document