Algebraic Coding Theory Over Finite Commutative Rings

Author(s):  
Steven T. Dougherty
2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2011 ◽  
Vol 10 (04) ◽  
pp. 665-674
Author(s):  
LI CHEN ◽  
TONGSUO WU

Let p be a prime number. Let G = Γ(R) be a ring graph, i.e. the zero-divisor graph of a commutative ring R. For an induced subgraph H of G, let CG(H) = {z ∈ V(G) ∣N(z) = V(H)}. Assume that in the graph G there exists an induced subgraph H which is isomorphic to the complete graph Kp-1, a vertex c ∈ CG(H), and a vertex z such that d(c, z) = 3. In this paper, we characterize the finite commutative rings R whose graphs G = Γ(R) have this property (called condition (Kp)).


1978 ◽  
Vol 21 (2) ◽  
pp. 175-188 ◽  
Author(s):  
J.V. Brawley ◽  
R.O. Gamble

Sign in / Sign up

Export Citation Format

Share Document