finite commutative rings
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 20)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
S. Karthik ◽  
S. N. Meera ◽  
K. Selvakumar

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the set of all nonzero zero-divisors of [Formula: see text]. The annihilator graph of commutative ring [Formula: see text] is the simple undirected graph [Formula: see text] with vertices [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity whose annihilator graph and essential graph have crosscap two.


2021 ◽  
Vol 304 ◽  
pp. 384-396
Author(s):  
Abhishek Kesarwani ◽  
Sumit Kumar Pandey ◽  
Santanu Sarkar ◽  
Ayineedi Venkateswarlu

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Abdulaziz M. Alanazi ◽  
Mohd Nazim ◽  
Nadeem Ur Rehman

Let A be a commutative ring with unity and let set of all zero divisors of A be denoted by Z A . An ideal ℐ of the ring A is said to be essential if it has a nonzero intersection with every nonzero ideal of A . It is denoted by ℐ ≤ e A . The generalized zero-divisor graph denoted by Γ g A is an undirected graph with vertex set Z A ∗ (set of all nonzero zero-divisors of A ) and two distinct vertices x 1 and x 2 are adjacent if and only if ann x 1 + ann x 2 ≤ e A . In this paper, first we characterized all the finite commutative rings A for which Γ g A is isomorphic to some well-known graphs. Then, we classify all the finite commutative rings A for which Γ g A is planar, outerplanar, or toroidal. Finally, we discuss about the domination number of Γ g A .


2021 ◽  
Vol 28 (03) ◽  
pp. 533-540
Author(s):  
Qiong Liu ◽  
Tongsuo Wu ◽  
Jin Guo

Let [Formula: see text] be a commutative ring and [Formula: see text] be its zero-divisor graph. We completely determine the structure of all finite commutative rings whose zero-divisor graphs have clique number one, two, or three. Furthermore, if [Formula: see text] (each [Formula: see text] is local for [Formula: see text]), we also give algebraic characterizations of the ring [Formula: see text] when the clique number of [Formula: see text] is four.


2021 ◽  
Vol 7 (1) ◽  
pp. 821-839
Author(s):  
Songpon Sriwongsa ◽  
◽  
Siripong Sirisuk ◽  

<abstract><p>In this paper, we study two types of nonisotropic symplectic graphs over finite commutative rings defined by nonisotropic free submodules of rank $ 2 $ and McCoy rank of matrices. We prove that the graphs are quasi-strongly regular or Deza graphs and we find their parameters. The diameter and vertex transitivity are also analyzed. Moreover, we study subconstituents of these nonisotropic symplectic graphs.</p></abstract>


Author(s):  
Katja Mönius

AbstractWe investigate eigenvalues of the zero-divisor graph $$\Gamma (R)$$ Γ ( R ) of finite commutative rings R and study the interplay between these eigenvalues, the ring-theoretic properties of R and the graph-theoretic properties of $$\Gamma (R)$$ Γ ( R ) . The graph $$\Gamma (R)$$ Γ ( R ) is defined as the graph with vertex set consisting of all nonzero zero-divisors of R and adjacent vertices x, y whenever $$xy = 0$$ x y = 0 . We provide formulas for the nullity of $$\Gamma (R)$$ Γ ( R ) , i.e., the multiplicity of the eigenvalue 0 of $$\Gamma (R)$$ Γ ( R ) . Moreover, we precisely determine the spectra of $$\Gamma ({\mathbb {Z}}_p \times {\mathbb {Z}}_p \times {\mathbb {Z}}_p)$$ Γ ( Z p × Z p × Z p ) and $$\Gamma ({\mathbb {Z}}_p \times {\mathbb {Z}}_p \times {\mathbb {Z}}_p \times {\mathbb {Z}}_p)$$ Γ ( Z p × Z p × Z p × Z p ) for a prime number p. We introduce a graph product $$\times _{\Gamma }$$ × Γ with the property that $$\Gamma (R) \cong \Gamma (R_1) \times _{\Gamma } \cdots \times _{\Gamma } \Gamma (R_r)$$ Γ ( R ) ≅ Γ ( R 1 ) × Γ ⋯ × Γ Γ ( R r ) whenever $$R \cong R_1 \times \cdots \times R_r.$$ R ≅ R 1 × ⋯ × R r . With this product, we find relations between the number of vertices of the zero-divisor graph $$\Gamma (R)$$ Γ ( R ) , the compressed zero-divisor graph, the structure of the ring R and the eigenvalues of $$\Gamma (R)$$ Γ ( R ) .


Sign in / Sign up

Export Citation Format

Share Document